5.4 - The Quarter-Wave Transformer

Reading Assignment: pp. 73-76, 240-243

By now you've noticed that a **quarter-wave length** of transmission line ($\ell = \lambda/4$, $2\beta\ell = \pi$) appears often in microwave engineering problems.

Another application of the $\ell = \lambda/4$ transmission line is as an **impedance matching network**.

HO: THE QUARTER-WAVE TRANSFORMER

HO: THE SIGNAL-FLOW GRAPH OF A QUARTER-WAVE TRANSFORMER

Q: Why does the quarter-wave matching network work after all, the quarter-wave line is **mismatched** at both ends?

A: HO: MULTIPLE REFLECTION VIEWPOINT

<u>The Quarter-Wave</u>

Transformer

 R_L

Say the end of a transmission line with characteristic impedance Z_0 is terminated with a **resistive** (i.e., real) load.

Zo

Unless $R_L = Z_0$, the resistor is **mismatched** to the line, and thus some of the incident power will be **reflected**.

We can of course correct this situation by placing a matching network between the line and the load:

 Z_0

The quarter-wave transformer is simply a transmission line with characteristic impedance Z_1 and length $\ell = \lambda/4$ (i.e., a quarter-wave line).

 Z_1

 $\ell = \frac{\lambda}{4}$

 \rightarrow

 Z_{in}

Q: But what about the characteristic impedance Z_1 ; what **should** its value be??

A: Remember, the quarter wavelength case is one of the **special** cases that we studied. We know that the **input** impedance of the quarter wavelength line is:

Thus, if we wish for Z_{in} to be numerically equal to Z_0 , we find:

 $Z_{in} = \frac{\left(Z_1\right)^2}{R} = Z_0$

Problem #1

The matching **bandwidth** is **narrow**!

In other words, we obtain a **perfect** match at precisely the frequency where the length of the matching transmission line is a **quarter**-wavelength.

→ But remember, this length can be a quarter-wavelength at just **one** frequency!

Remember, wavelength is related to frequency as:

where v_p is the propagation velocity of the wave .

For **example**, assuming that $v_p = c$ (c = the speed of light in a vacuum), one wavelength at 1 GHz is 30 cm ($\lambda = 0.3 m$), while one wavelength at 3 GHz is 10 cm ($\lambda = 0.1 m$). As a result, a transmission line length $\ell = 7.5 cm$ is a quarter wavelength for a signal at 1GHz **only**.

Thus, a quarter-wave transformer provides a **perfect** match $(\Gamma_{in} = 0)$ at **one** and **only one** signal frequency!

As the signal frequency (i.e., wavelength) changes, the **electrical** length of the matching transmission line changes. It will **no longer** be a **quarter** wavelength, and thus we **no longer** will have a **perfect** match.

We find that the closer $R_L(R_{in})$ is to characteristic impedance Z_0 , the wider the bandwidth of the quarter wavelength transformer.

Figure 5.12 (p. 243) Reflection coefficient magnitude versus frequency for a single-section quarter-wave matching transformer with various load mismatches.

We will find that the bandwidth can be increased by adding multiple $\lambda/4$ sections!

Problem #2

 Z_0, β

Recall the matching solution was limited to loads that were **purely real**! I.E.:

 $Z_L = R_L + j0$

Of course, this is a BIG problem, as most loads will have a **reactive** component!

Fortunately, we have a relatively easy solution to this problem, as we can always add some length ℓ of transmission line to the load to make the impedance completely real:

 Z_L

 Z'_{L}

r'_{in2}

2 possible solutions!

However, remember that the input impedance will be purely real at only **one** frequency!

We can then build a quarter-wave transformer to **match** the line Z_0 to resistance R_{in} :

Rin

 r_{in1}

3/8

 Z_0

 Z_1

 $-\ell = \frac{\lambda}{4} -$

The boundary conditions associated with these connections are likewise:

$$a_{1y} = b_{2x}$$
 $a_{2x} = b_{1y}$ $a_{1L} = b_{2y}$ $a_{2y} = b_{1L}$

We can thus put the signal-flow graph pieces together to form the **signal-flow graph** of the quarter wave network:

 R_L

Q: Hey wait! If the quarter-wave transformer is a **matching network**, shouldn't $\Gamma_{in} = 0$??

A: Who says it isn't! Consider now three important facts.

For a quarter wave transformer, we set Z_1 such that:

$$Z_1^2 = Z_0 R_L \qquad \Rightarrow \qquad Z_0 = Z_1^2 / R_L$$

Inserting this into the scattering parameter S_{11} of the connector, we find:

$$\Gamma = \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{Z_1 - \frac{Z_1^2}{R_L}}{Z_1 + \frac{Z_1^2}{R_L}} = \frac{R_L - Z_1}{R_L + Z_1}$$

Look at this result! For the quarter-wave transformer, the **connector** S_{11} value (i.e., Γ) is the **same** as the **load** reflection coefficient Γ_{L} :

$$\Gamma = \frac{R_L - Z_1}{R_L + Z_1} = \Gamma_L \quad \leftarrow \quad \text{Fact 1}$$

Since the connector is **lossless** (unitary scattering matrix!), we can conclude (and likewise show) that:

$$\mathbf{l} = |\mathcal{S}_{11}|^2 + |\mathcal{S}_{21}|^2 = |\Gamma|^2 + |T|^2$$

Since Z_0 , Z_1 , and R_L are all real, the values Γ and T are also **real valued**. As a result, $|\Gamma|^2 = \Gamma^2$ and $|T|^2 = T^2$, and we can likewise conclude:

$$\Gamma^2 + T^2 = 1 \leftarrow Fact 2$$

Likewise, the Z1 transmission line has $\ell = \frac{3}{4}$, so that:

$$2\beta\ell = 2\left(\frac{2\pi}{\lambda}\right)\frac{\lambda}{4} = \pi$$

where you of course recall that $\beta = \frac{2\pi}{\lambda}!$ Thus:

$$e^{-j2\beta\ell} = e^{-j\pi} = -1$$
 Fact 3

As a result:

$$\Gamma_{in} = \Gamma + \frac{T^2 \Gamma_{\mathcal{L}} \boldsymbol{e}^{-j^2 \beta \ell}}{1 - \Gamma \Gamma_{\mathcal{L}}} = \Gamma - \frac{T^2 \Gamma_{\mathcal{L}}}{1 - \Gamma \Gamma_{\mathcal{L}}}$$

And using the **newly discovered** fact that (for a correctly designed transformer) $\Gamma_L = \Gamma$:

$$\Gamma_{\textit{in}} = \Gamma - \frac{\mathrm{T}^2 \, \Gamma_{\textit{L}}}{1 - \Gamma \, \Gamma_{\textit{L}}} = \Gamma - \frac{\mathrm{T}^2 \, \Gamma}{1 - \Gamma^2}$$

And also are **recent** discovery that $T^2 = 1 - \Gamma^2$:

$$\Gamma_{in} = \Gamma - \frac{T^2 \Gamma}{1 - \Gamma^2} = \Gamma - \frac{T^2 \Gamma}{T^2} = 0$$

A **perfect match**! The quarter-wave transformer does indeed work!

 Z_0

<u>Multiple Reflection</u> <u>Viewpoint</u>

The **quarter-wave** transformer brings up an interesting question in μ -wave engineering.

 $z = -\ell$

 $\Gamma_{in} = \mathbf{0}$

 $\ell = \frac{\lambda}{4}$ -

Q: Why is there no reflection at $z = -\ell$? It appears that the line is mismatched at both z = 0 and $z = -\ell$.

A: In fact there **are** reflections at these mismatched interfaces—an **infinite** number of them!

We can use our **signal flow graph** to determine the propagation series, once we determine all the **propagation paths** through the quarter-wave transformer.

z = 0

So the **second direct path** is

$$\boldsymbol{p}_2 = T \ \boldsymbol{e}^{-j90^{\circ}} \Gamma_L \ \boldsymbol{e}^{-j90^{\circ}} T = -T^2 \Gamma_L$$

note that traveling $2\beta \ell = 180^{\circ}$ has produced a **minus** sign in the result.

Path 3. However, a portion of this second wave is also reflected (Γ) back into the Z_1 transmission line at $z = -\ell$, where it again travels to $\beta \ell = 90^\circ$ the load, is partially reflected (Γ_L), travels $\beta \ell = 90^\circ$ back to $z = -\ell$, and is partially transmitted into $Z_0(T)$ —our third reflected wave!

-T

Т

Note that path 3 is **not** a direct path!

Г

Path *n*. We can see that this "bouncing" back and forth can go on **forever**, with each trip launching a **new** reflected wave into the Z_0 transmission line.

Note however, that the **power** associated with each successive reflected wave is **smaller** than the previous, and so eventually, the power associated with the reflected waves will **diminish** to insignificance!

Q: But, why then is $\Gamma = 0$?

A: Each reflected wave is a **coherent** wave. That is, they all oscillate at same frequency ω ; the reflected waves differ only in terms of their **magnitude** and **phase**.

Therefore, to determine the **total** reflected wave, we must perform a **coherent summation** of each reflected wave—this summation of course results in our **propagation series**, a series that must converge for passive devices.

$$b=a\sum_{n=1}^{\infty}p_n$$

4/2/2009

a

Γ,

It can be shown that the infinite propagation series for **this** quarter-wavelength structure **converges** to the closed-form expression:

$$\frac{b}{a} = \sum_{n=1}^{\infty} p_n = \frac{\Gamma - \Gamma^2 \Gamma_L - T^2 \Gamma_L}{1 - \Gamma^2}$$

Thus, the **input** reflection coefficient is:

$$\Gamma_{in} = \frac{b}{a} = \frac{\Gamma - \Gamma^2 \Gamma_L - T^2 \Gamma_L}{1 - \Gamma^2}$$

Using our definitions, it can likewise be shown that the **numerator** of the above expression is:

$$\Gamma - \Gamma^{2} \Gamma_{L} - T^{2} \Gamma_{L} = \frac{2(Z_{1}^{2} - Z_{0} R_{L})}{(Z_{1} + Z_{0})(R_{L} + Z_{1})}$$

It is evident that the numerator (and therefore Γ) will be **zero** if:

$$Z_1^2 - Z_0 R_L = 0 \qquad \Rightarrow \qquad Z_1 = \sqrt{Z_0 R_L}$$

Just as we expected!

Physically, this results insures that all the reflected waves add coherently together to produce a **zero value**!

Note all of our transmission line analysis has been steady-state analysis. We assume our signals are sinusoidal, of the form $exp(j\omega t)$. Note this signal exists for all time t—the signal is

assumed to have been "on" **forever**, and assumed to continue on forever.

In other words, in steady-state analysis, **all** the multiple reflections have long since occurred, and thus have reached a steady state—the reflected wave is **zero**!