Object Oriented Analysis and Design
Abstraction and information hiding

Object oriented programming principles
Unified Modeling Language

Software life-cycle models

Key programming issues



*Abstraction and Information Hiding

e Abstraction

— provide an easier higher-level interface to mask
possibly complex low-level details
— functional abstraction

e separates the purpose of a module from its
implementation

* specifications for each module are written before
implementation

— data abstraction

* focuses on the operations of data, not on the
implementation of the operations



*Abstraction and Information Hiding

e Abstract data type (ADT)

— a collection of data and a set of operations on the
data

— you can use an ADT’s operations without knowing
their implementations or how data is stored, if
you know the operations’ specifications

e Data structure

— construct that is defined within a programming
language to store a collection of data



* |[nformation hiding

— hide details within a module

— ensure that no other module can tamper with
these hidden details

— public view of a module
» described by its specifications

— private view of a module

* implementation details that the specifications should
not describe



Principles of Object-Oriented
Programming (OOP)

e Object-oriented languages enable us to build
classes of objects

A class combines

— attributes of objects of a single type
* typically data
 called data members

— behaviors (operations)

* typically operate on the data
 called methods or member functions



Principles of Object-Oriented
Programming (OOP)
* Three principles of OOP

— Encapsulation
* objects combine data and operations
* hides inner details
— Inheritance
* classes can inherit properties from other classes
* existing classes can be reused
— Polymorphism

* objects can determine appropriate operations at
execution time



.
>
~KU 7

ey )

bject-Oriented Analysis & Design

* A team of programmers for a large software
development project requires

— an overall plan
— organization
— communication
* Problem solving
e understanding the problem statement
e design a conceptual solution
* implement (code) the solution

* OOA/D is a process for problem solving.



.; fi,ﬂ‘

bject-Oriented Analysis & Design

* Analysis — Process to develop
— an understanding of the problem

— the requirements of a solution

* what a solution must be and do, and not how to design or
implement it

* Object-oriented analysis (OOA)

— expresses an understanding of the problem and the
requirements of a solution in terms of objects

— objects represent real-world objects, software
systems, ideas

— OOA describes objects and their interactions among
one another



bject-Oriented Analysis & Design

* Object-oriented design
— expresses an understanding of a solution that
fulfills the requirements discovered during OOA

— describes a solution in terms of

» software objects, and object collaborations

* objects collaborate when they send messages
— creates one or more models of a solution

* some emphasize interactions among objects
e others emphasize relationships among objects



.

o

%  Applying the UML to OOA/D

* Unified Modeling Language (UML)
— tool for exploration and communication during
the design of a solution

— models a problem domain in terms of objects
independently of a programming language

— visually represents object-oriented solutions as
diagrams

— enables members of a programming team to
communicate visually with one another and gain a
common understanding of the system being built



o

% Applying the UML to OOA/D

e UML use case for OOA

— A set of textual scenarios (stories) of the solution

* each scenario describes the system’s behavior under certain
circumstances from the perspective of the user

e focus on the responsibilities of the system to meeting a
user’s goals

* main success scenario (happy path): interaction between
user and system when all goes well

* alternate scenarios: interaction between user and system
under exceptional circumstances

— Find noteworthy objects, attributes, and associations
within the scenarios



<R
SN
= M“J

Applying the UML to OOA/D

 An example of a main success scenario

— customer asks to withdraw money from a bank
account

— bank identifies and authenticates customer

— bank gets account type, account number, and
withdrawal amount from customer

— bank verifies that account balance is greater than
withdrawal amount

— bank generates receipt for the transaction

— bank counts out the correct amount of money for
customer

— customer leaves bank



.

o

% Applying the UML to OOA/D

 An example of an alternate scenario

— customer asks to withdraw money from a bank
account

— bank identifies, but fails to authenticate customer
— bank refuses to process the customer’s request
— customer leaves bank



“  Applying the UML to OOA/D

authorize(name, identifier)

getBalance(accountNum)

If balance is greaterthanamount
newBalance = balance - amount

balance

setBalance(newBalance)

generateReceipt()

countCash()

cash, receipt

J
)

Figure 1-2 Sequence diagram for the main success scenario

EECS 268 Programming 11



Applying the UML to OOA/D

bank:Bank

«Create»

account:Account

Figure 1-3 Sequence diagram showing the creation of a new object



.

o

%  Applying the UML to OOA/D

 UML class (static) diagram

— Represents a conceptual model of a class of

objects in a language-independent way

— Shows the name, attributes, and operations of a
class

— Shows how multiple classes are related to one
another




¥ Applying the UML to OOA/D

(a

Bank

(b)
Bank

name
routingNum
authorize(name,identifier)
createAccount()

Bank

createAccount()

Figure 1-4 Three possible class diagrams for a class of banks

EECS 268 Programming 11

-17



Bank

-name:string
-routingNum:integer

-createAccount()

Account

-accountNum:integer
-balance:float

+getBalance():float {query}

+withdraw(in accountNum:integer, in amount:float):boolean
+deposit(in accountNum:integer, in amount:float):boolean

Checking

-chargePerCheck:float
-numCheck:integer
-minBalance:float

+getBalance():float {query}

Savings

-interestRate:float

-accruelnterest()

+getBalance():float {query}

Figure 1-5 A UML class diagram of a banking system

EECS 268 Programming 11

0.*

Customer

-name:string
-address:string

+getName():string {query}
+changeName(in newName:string)
+getAddress():string {query}
+changeAddress(in newAddress:string)

-18



% Applying the UML to OOA/D

* Class relationships

— association
* classes know about each other (Bank — Customer classes)

— aggregation (Containment)

* One class contains instance of another class (Bank — Account
classes)

* lifetime of the containing and contained may be the same
(composition)
— generalization
* indicates a family of classes related by inheritance

e “Checking” and “Savings” inherit attributes and operations
of “Account”



The Software Life Cycle

* Describes phases of s/w development from
conception, deployment, replacement to deletion

* |terative and Evolutionary Development

— many short, fixed-length iterations build on the
previous iteration

— iteration cycles through analysis, design,
implementation, testing, and integration of a small
portion of the problem domain

— early iterations create the core of the system; further
iterations build on that core



Software Life Cycle

e Rational Unified Process (RUP) Development
— RUP uses the OOA/D tools

— four development phases
* Inception: feasibility study, project vision, time/cost
estimates

 Elaboration: refinement of project vision, time/cost
estimates, and system requirements; development of
core system

* Construction: iterative development of remaining
system

* Transition: testing and deployment of the system



Rational Unified Process (RUP)
Development Phases

A
Phases
Inception Elaboration Construction Transition
'h-‘..\
\
\\
A / \.
\ ]
/ \
/ r \ '
/ ' \
/ “J N
! % M N
/ AN W N
/ -~ | . \,\
I’ / \ I. \‘ | \\
II I \ i \‘.‘\ A Y
s ’ ~ 1 T
/ L T
l, ’
1 n
Iterations
Analysis =-===s=msmmnnnan Implementation
Design --------- Testing -— -— -— -~

Figure 1-8 Relative amounts of work done in each development phase



Software Life Cycle

* Waterfall Method of Development

— develops a solution through sequential phases

* requirements analysis, design, implementation, testing,
deployment

— hard to correctly specify a system without early
feedback

— wrong analysis leads to wrong solution
— outdated (less used)
— do not impose this method on RUP development



Achieving a Better Solution

* Analysis and design improve solutions

* Cohesion — perform one well-defined task
— for self-documenting, easy-to-understand code
— easy to reuse in other software projects
— easy to revise or correct

— Robust — less likely to be affected by change;
performs well under unusual conditions

— promotes low coupling



Achieving a Better Solution

* Coupling — not dependent on other modules

— system of modules with low coupling is
* easier to change and understand

— module with low coupling is

e easier to reuse and has increased cohesion

— coupling is necessary for objects to collaborate
e should be minimized; well-defined

— class diagrams show dependencies among classes,
and hence coupling



Achieving a Better Solution

 Minimal and complete interfaces

— class interface declares publicly accessible
methods (and data)

— classes should be easy to understand, and so have
few methods

— complete interface

 provide all methods consistent with the responsibilities
of the class

— minimal interface
e provide only essential methods



Operation Contracts

A module’s operation contract specifies its
— purpose, assumptions, input, output

Begin during analysis, finish during design
— used to document code

Contract shows the responsibilities of one
module to another

Does not describe how the module will
perform its task



Operation Contracts

* Specify data flow among modules
— what data is available to a module?
— what does the module assume?
— what actions take place?
— what effect does the module have on the data?

 Precondition

— statement of conditions that must exist before a
module executes

e Postcondition

— statement of conditions that exist after a module
executes



Operation Contracts

* First draft specifications -- sort(anArray, num)

/[ Sorts an array.
// Precondition: anArray is an array of num integers; num > 0.
// Postcondition: The integers in anArray are sorted.

* Revised Specifications -- sort(anArray, num)

/[ Sorts an array into ascending order.

// Precondition: anArray is an array of num

I/ integers; 1 <= num <= MAX_ARRAY, where

Il MAX_ARRAY is a global constant that specifies
// the maximum size of anArray.

/[ Postcondition: anArray[0] <= anArray[1] <= ...

I/l <= anArray[num-1], num is unchanged



Verification

* Assertion — a statement about a particular
condition at a certain point in an algorithm

— like, preconditions and postconditions

* |[nvariant —a condition that is always true at a
certain point in an algorithm

* Loop invariant — a condition that is true before
and after each loop iteration

— can be used to detect errors before coding is
started



What is a Good Solution?

A solution is good if:
— the total cost it incurs over all phases of its life cycle is
minimal
The cost of a solution includes:
— computer resources that the program consumes
— difficulties encountered by users

— consequences of a program that does not behave
correctly

Programs must be well structured and
documented

Efficiency is one aspect of a solution’s cost



Key Issues in Programming

Modularity

Style

Modifiability

Ease of Use

Fail-safe programming
Debugging

Testing



Key Issues in Programming:
Modularity

* Modularity has a favorable impact on
— Constructing programs
— Debugging programs
— Reading programs
— Modifying programs
— Eliminating redundant code



Use of private data members

Proper use of reference arguments
Avoidance of global variables in modules
Error handling

Readability

Documentation



Key Issues in Programming:
Modifiability
* Modifiability is easier through the use of

— Named constants
— The typedef statement



Key Issues in Programming:
Ease of Use

* |n an interactive environment, the program
should prompt the user for input in a clear

manner
* A program should always echo its input

 The output should be well labeled and easy to
read




Key Issues in Programming:
Fail-Safe Programming

Fail-safe programs will perform reasonably no
matter how anyone uses it

Test for invalid input data and program logic
errors

Check invariants
Enforce preconditions
Check argument values



Key Issues in Programming:
Debugging

* Programmer must systematically check a
program’s logic to find where an error occurs

* Tools to use while debugging:
— single-stepping
— watches
— breakpoints
— print statements
— dump functions



Key Issues in Programming:
Testing

* Levels of testing
— Unit testing: Test methods, then classes
— Integration testing: Test interactions among modules
— System testing: Test entire program

— Acceptance testing: Show system complies with
requirements
* Types
— Open-box (white-box or glass-box) testing
* test knowing the implementation
* test all lines of code (decision branches, etc.)

— Closed-box (black-box or functional) testing
* test knowing only the specifications



Key Issues in Programming:
Testing

* Developing test data
— include boundary values
— need to know expected results

* Techniques
— assert statements to check invariants
— disable, but do not remove, code used for testing
e /*and */
* boolean checks
¢ pre-processor macros




