
• Object Oriented Analysis and Design

• Abstraction and information hiding

• Object oriented programming principles

• Unified Modeling Language

• Software life-cycle models

• Key programming issues

Chapter 1: Programming Principles

1-1 EECS 268 Programming II

• Abstraction
– provide an easier higher-level interface to mask

possibly complex low-level details

– functional abstraction
• separates the purpose of a module from its

implementation

• specifications for each module are written before
implementation

– data abstraction
• focuses on the operations of data, not on the

implementation of the operations

Abstraction and Information Hiding

1-2 EECS 268 Programming II

• Abstract data type (ADT)

– a collection of data and a set of operations on the
data

– you can use an ADT’s operations without knowing
their implementations or how data is stored, if
you know the operations’ specifications

• Data structure

– construct that is defined within a programming
language to store a collection of data

Abstraction and Information Hiding

1-3 EECS 268 Programming II

• Information hiding

– hide details within a module

– ensure that no other module can tamper with
these hidden details

– public view of a module

• described by its specifications

– private view of a module

• implementation details that the specifications should
not describe

Abstraction and Information Hiding

1-4 EECS 268 Programming II

• Object-oriented languages enable us to build
classes of objects

• A class combines

– attributes of objects of a single type

• typically data

• called data members

– behaviors (operations)

• typically operate on the data

• called methods or member functions

Principles of Object-Oriented
Programming (OOP)

1-5 EECS 268 Programming II

• Three principles of OOP

– Encapsulation

• objects combine data and operations

• hides inner details

– Inheritance

• classes can inherit properties from other classes

• existing classes can be reused

– Polymorphism

• objects can determine appropriate operations at
execution time

Principles of Object-Oriented
Programming (OOP)

1-6 EECS 268 Programming II

• A team of programmers for a large software
development project requires
– an overall plan
– organization
– communication

• Problem solving
• understanding the problem statement
• design a conceptual solution
• implement (code) the solution

• OOA/D is a process for problem solving.

Object-Oriented Analysis & Design

1-7 EECS 268 Programming II

• Analysis – Process to develop
– an understanding of the problem
– the requirements of a solution

• what a solution must be and do, and not how to design or
implement it

• Object-oriented analysis (OOA)
– expresses an understanding of the problem and the

requirements of a solution in terms of objects
– objects represent real-world objects, software

systems, ideas
– OOA describes objects and their interactions among

one another

Object-Oriented Analysis & Design

1-8 EECS 268 Programming II

• Object-oriented design

– expresses an understanding of a solution that
fulfills the requirements discovered during OOA

– describes a solution in terms of

• software objects, and object collaborations

• objects collaborate when they send messages

– creates one or more models of a solution

• some emphasize interactions among objects

• others emphasize relationships among objects

Object-Oriented Analysis & Design

1-9 EECS 268 Programming II

• Unified Modeling Language (UML)
– tool for exploration and communication during

the design of a solution

– models a problem domain in terms of objects
independently of a programming language

– visually represents object-oriented solutions as
diagrams

– enables members of a programming team to
communicate visually with one another and gain a
common understanding of the system being built

Applying the UML to OOA/D

1-10 EECS 268 Programming II

• UML use case for OOA
– A set of textual scenarios (stories) of the solution

• each scenario describes the system’s behavior under certain
circumstances from the perspective of the user

• focus on the responsibilities of the system to meeting a
user’s goals

• main success scenario (happy path): interaction between
user and system when all goes well

• alternate scenarios: interaction between user and system
under exceptional circumstances

– Find noteworthy objects, attributes, and associations
within the scenarios

Applying the UML to OOA/D

1-11 EECS 268 Programming II

• An example of a main success scenario
– customer asks to withdraw money from a bank

account
– bank identifies and authenticates customer
– bank gets account type, account number, and

withdrawal amount from customer
– bank verifies that account balance is greater than

withdrawal amount
– bank generates receipt for the transaction
– bank counts out the correct amount of money for

customer
– customer leaves bank

Applying the UML to OOA/D

1-12 EECS 268 Programming II

• An example of an alternate scenario

– customer asks to withdraw money from a bank
account

– bank identifies, but fails to authenticate customer

– bank refuses to process the customer’s request

– customer leaves bank

Applying the UML to OOA/D

1-13 EECS 268 Programming II

Applying the UML to OOA/D

1-14

Figure 1-2 Sequence diagram for the main success scenario
EECS 268 Programming II

Applying the UML to OOA/D

1-15

Figure 1-3 Sequence diagram showing the creation of a new object

EECS 268 Programming II

• UML class (static) diagram

– Represents a conceptual model of a class of
objects in a language-independent way

– Shows the name, attributes, and operations of a
class

– Shows how multiple classes are related to one
another

Applying the UML to OOA/D

1-16 EECS 268 Programming II

Applying the UML to OOA/D

1-17

Figure 1-4 Three possible class diagrams for a class of banks
EECS 268 Programming II

Applying the UML to OOA/D

1-18

Figure 1-5 A UML class diagram of a banking system
EECS 268 Programming II

• Class relationships
– association

• classes know about each other (Bank – Customer classes)

– aggregation (Containment)
• One class contains instance of another class (Bank – Account

classes)
• lifetime of the containing and contained may be the same

(composition)

– generalization
• indicates a family of classes related by inheritance
• “Checking” and “Savings” inherit attributes and operations

of “Account”

Applying the UML to OOA/D

1-19 EECS 268 Programming II

• Describes phases of s/w development from
conception, deployment, replacement to deletion

• Iterative and Evolutionary Development
– many short, fixed-length iterations build on the

previous iteration

– iteration cycles through analysis, design,
implementation, testing, and integration of a small
portion of the problem domain

– early iterations create the core of the system; further
iterations build on that core

The Software Life Cycle

1-20 EECS 268 Programming II

• Rational Unified Process (RUP) Development
– RUP uses the OOA/D tools

– four development phases
• Inception: feasibility study, project vision, time/cost

estimates

• Elaboration: refinement of project vision, time/cost
estimates, and system requirements; development of
core system

• Construction: iterative development of remaining
system

• Transition: testing and deployment of the system

Software Life Cycle

1-21 EECS 268 Programming II

Rational Unified Process (RUP)
Development Phases

1-22

Figure 1-8 Relative amounts of work done in each development phase

EECS 268 Programming II

• Waterfall Method of Development

– develops a solution through sequential phases

• requirements analysis, design, implementation, testing,
deployment

– hard to correctly specify a system without early
feedback

– wrong analysis leads to wrong solution

– outdated (less used)

– do not impose this method on RUP development

Software Life Cycle

1-23 EECS 268 Programming II

• Analysis and design improve solutions

• Cohesion – perform one well-defined task

– for self-documenting, easy-to-understand code

– easy to reuse in other software projects

– easy to revise or correct

– Robust – less likely to be affected by change;
performs well under unusual conditions

– promotes low coupling

Achieving a Better Solution

1-24 EECS 268 Programming II

• Coupling – not dependent on other modules

– system of modules with low coupling is

• easier to change and understand

– module with low coupling is

• easier to reuse and has increased cohesion

– coupling is necessary for objects to collaborate

• should be minimized; well-defined

– class diagrams show dependencies among classes,
and hence coupling

Achieving a Better Solution

1-25 EECS 268 Programming II

• Minimal and complete interfaces
– class interface declares publicly accessible

methods (and data)

– classes should be easy to understand, and so have
few methods

– complete interface
• provide all methods consistent with the responsibilities

of the class

– minimal interface
• provide only essential methods

Achieving a Better Solution

1-26 EECS 268 Programming II

• A module’s operation contract specifies its

– purpose, assumptions, input, output

• Begin during analysis, finish during design

– used to document code

• Contract shows the responsibilities of one
module to another

• Does not describe how the module will
perform its task

Operation Contracts

1-27 EECS 268 Programming II

• Specify data flow among modules
– what data is available to a module?
– what does the module assume?
– what actions take place?
– what effect does the module have on the data?

• Precondition
– statement of conditions that must exist before a

module executes
• Postcondition

– statement of conditions that exist after a module
executes

Operation Contracts

1-28 EECS 268 Programming II

• First draft specifications -- sort(anArray, num)

 // Sorts an array.

 // Precondition: anArray is an array of num integers; num > 0.

 // Postcondition: The integers in anArray are sorted.

• Revised Specifications -- sort(anArray, num)

 // Sorts an array into ascending order.

 // Precondition: anArray is an array of num

 // integers; 1 <= num <= MAX_ARRAY, where

 // MAX_ARRAY is a global constant that specifies

 // the maximum size of anArray.

 // Postcondition: anArray[0] <= anArray[1] <= ...

 // <= anArray[num-1], num is unchanged

Operation Contracts

1-29 EECS 268 Programming II

• Assertion – a statement about a particular
condition at a certain point in an algorithm

– like, preconditions and postconditions

• Invariant – a condition that is always true at a
certain point in an algorithm

• Loop invariant – a condition that is true before
and after each loop iteration

– can be used to detect errors before coding is
started

Verification

1-30 EECS 268 Programming II

• A solution is good if:
– the total cost it incurs over all phases of its life cycle is

minimal

• The cost of a solution includes:
– computer resources that the program consumes
– difficulties encountered by users
– consequences of a program that does not behave

correctly

• Programs must be well structured and
documented

• Efficiency is one aspect of a solution’s cost

What is a Good Solution?

1-31 EECS 268 Programming II

• Modularity

• Style

• Modifiability

• Ease of Use

• Fail-safe programming

• Debugging

• Testing

Key Issues in Programming

1-32 EECS 268 Programming II

• Modularity has a favorable impact on

– Constructing programs

– Debugging programs

– Reading programs

– Modifying programs

– Eliminating redundant code

Key Issues in Programming:
Modularity

1-33 EECS 268 Programming II

• Use of private data members

• Proper use of reference arguments

• Avoidance of global variables in modules

• Error handling

• Readability

• Documentation

Key Issues in Programming: Style

1-34 EECS 268 Programming II

• Modifiability is easier through the use of

– Named constants

– The typedef statement

Key Issues in Programming:
Modifiability

1-35 EECS 268 Programming II

• In an interactive environment, the program
should prompt the user for input in a clear
manner

• A program should always echo its input

• The output should be well labeled and easy to
read

Key Issues in Programming:
Ease of Use

1-36 EECS 268 Programming II

• Fail-safe programs will perform reasonably no
matter how anyone uses it

• Test for invalid input data and program logic
errors

• Check invariants

• Enforce preconditions

• Check argument values

Key Issues in Programming:
Fail-Safe Programming

1-37 EECS 268 Programming II

• Programmer must systematically check a
program’s logic to find where an error occurs

• Tools to use while debugging:

– single-stepping

– watches

– breakpoints

– print statements

– dump functions

Key Issues in Programming:
Debugging

1-38 EECS 268 Programming II

• Levels of testing
– Unit testing: Test methods, then classes
– Integration testing: Test interactions among modules
– System testing: Test entire program
– Acceptance testing: Show system complies with

requirements

• Types
– Open-box (white-box or glass-box) testing

• test knowing the implementation
• test all lines of code (decision branches, etc.)

– Closed-box (black-box or functional) testing
• test knowing only the specifications

Key Issues in Programming:
Testing

1-39 EECS 268 Programming II

• Developing test data
– include boundary values

– need to know expected results

• Techniques
– assert statements to check invariants

– disable, but do not remove, code used for testing
• /* and */

• boolean checks

• pre-processor macros

Key Issues in Programming:
Testing

1-40 EECS 268 Programming II

