
Tables, Priority Queues, Heaps 

• Table ADT 

– purpose, implementations 

• Priority Queue ADT 

– variation on Table ADT 

• Heaps 

– purpose, implementation 

– heapsort 

EECS 268 Programming II 1 



Table ADT 

• A table in generic terms has M columns and N rows 
– each row contains a separate record  
– each column contains a different component, or field, of  

the same record 

• Each table, or set of data, is also generally sorted, or 
accessed, by a key record component 
– a single set of data can be organized into several different 

tables, sorted according to different keys 

• Another common terms is a dictionary, whose entries 
are records, inserted and accessed according to a key 
value 
– key may be a field in the record or not 
– may also be used as frontends for data base access 

EECS 268 Programming II 2 



ADT Table – Example 

• The ADT table, or dictionary 

– Uses a search key to identify its items 

– Its items are records that contain several pieces of 
data 

3 



ADT Table – Operations 

• A simple and obvious set of operations can be used 
for a wide range of program activities 
– Create and Destroy Table instance 

– Determine the number of items including zero 

– Insert an item in a table using a key value 

– Delete an item with a given key value 

– Retrieve an item with a given key value 

– Retrieve the items in the table (sorted or unsorted) 

• Entries with identical key values maybe forbidden, 
but can be handled with a little imagination  

EECS 268 Programming II 4 



The ADT Table 

5 

• void tableInsert(ItemType& item):  
– store item under its key 

• boolean tableDelete(KeyType 
key_value):  
– delete item with key == key_value, if 

present 

• ItemType* tableRetrieve(KeyType 
key_value):  
– return pointer to item with 

key==key_value 

• void traverseTable(Functor visitor):  
– Functor: a function-object, much like a 

fn pointer 
– visitor is executed for each node in table 



The ADT Table 

• Our table assumes distinct search keys 

– other tables could allow duplicate search keys 

• The traverseTable operation visits table 
items in a specified order 

– one common order is by sorted search key 

– a client-defined visit function is supplied as an 
argument to the traversal 

• called once for each item in the table 

EECS 268 Programming II 6 



Selecting an Implementation 

• Linear implementations: Four categories  

– Unsorted: array based or pointer based 

– Sorted (by search key): array based or pointer 
based 

EECS 268 Programming II 7 

Figure 11-3  The data members for two sorted linear implementations of the ADT table for the data 

in Figure 11-1: (a) array based; (b) pointer based 



Selecting an Implementation 

8 

Figure 11-4  The data 

members for a binary search 

tree implementation of the 

ADT table for the data in 

Figure 11-1 

• Nonlinear 
implementations 

– Binary search tree 
implementation 
• Offers several advantages 

over linear 
implementations 



Selecting an Implementation 

• The requirements of a particular application 
influence the selection of an implementation 

– Questions to be considered about an application 
before choosing an implementation 

• What operations are needed? 

• How often is each operation required? 

• Are frequently used operations efficient given a 
particular implementation? 

EECS 268 Programming II 9 



Comparing Linear Implementations 

• Unsorted array-based implementation 
– Insertion is made efficiently after the last table 

item in an array 

– Deletion usually requires shifting data 

– Retrieval requires a sequential search 

10 
Figure 11-5a  Insertion for unsorted linear implementations: array based 



Comparing Linear Implementations 

• Sorted array-based implementation 
– Both insertions and deletions require shifting 

data 

– Retrieval can use an efficient binary search  

11 

Figure 11-6a  Insertion for sorted linear implementations: array based 



Comparing Linear Implementations 

• Unsorted pointer-based implementation 
– No data shifts 
– Insertion is made efficiently at the beginning of a 

linked list 
– Deletion requires a sequential search  
– Retrieval requires a sequential search 

12 Figure 11-5b  Insertion for unsorted linear implementations: pointer based 



Comparing Linear Implementations 

• Sorted pointer-based implementation 
– No data shifts 

– Insertions, deletions, and retrievals each 
require a sequential search  

13 

Figure 11-6b  Insertion for sorted linear implementations: pointer based 



Selecting an Implementation 

• Linear  

– Easy to understand conceptually 

– May be appropriate for small tables or unsorted 
tables with few deletions 

• Nonlinear  

– Is usually a better choice than a linear 
implementation 

– A balanced binary search tree 

• Increases the efficiency of the table operations 

EECS 268 Programming II 14 



Selecting an Implementation 

EECS 268 Programming II 15 

Figure 11-7  The average-case order of the ADT table operations for various implementations 



Selecting an Implementation for a 
Particular Application 

• Frequent insertions and infrequent traversals in 
no particular order 
– Unsorted linear implementation 

• Frequent retrievals 
– Sorted array-based implementation 

• Binary search 

– Balanced binary search tree 

• Frequent retrievals, insertions, deletions, 
traversals 
– Binary search tree (preferably balanced) 

EECS 268 Programming II 16 



Generalized Data Set Management 

• Problem of managing a set of data items occurs 
many times in many contexts 
– arbitrary set of data represented by an arbitrary key 

value within the set 

• Strict separation of the set of data from the key 
helps with abstraction and generalization 

• Data Set 
– class or structure defined in application terms 

• Container class 
– STL terminology 
– holds key and data set items 

EECS 268 Programming II 17 



Keyed Base Class 

• Create base class for 
associating key with an 
arbitrary item 

• Maintains key outside the 
item fields 

• Rows of Table are derived 
classes of this class 

• Inserting item in Table 
creates instance of derived 
class and stores it under 
key 

#include <string> 

using namespace std; 

typedef string KeyType; 

 

class KeyedItem 

{ 

public: 

   KeyedItem() {} 

   KeyedItem(const KeyType& 
keyValue) 

   : searchKey(keyValue){} 

   KeyType getKey() const { 

      return searchKey; 

   } 

private: 

   KeyType searchKey; 

}; 

EECS 268 Programming II 18 



Table Item Class 

• Create table of cities 
indexed by city name 

• Might create struct for 
each city 

– name, popu., country 

• Or, might derive this 
class from KeyedItem 

• Delegates chosen key to 
base class storage 

class City : public KeyedItem 
{ 
public: 
   City() : KeyedItem() {} 
   City(const string& name, 
            const string& ctry, 
            const int& num)  
    : KeyedItem(name),  
       country(ctry), pop(num) {} 
 
   string cityName() const; 
   int getPopulation() const; 
   void setPopulation(int newPop); 
private: 
   // city's name is search-key value 
   string country;  
   int    pop;  
}; 

EECS 268 Programming II 19 



A Sorted Array-Based Implementation 
of the ADT Table 

• Default constructor and virtual destructor  

• Copy constructor supplied by the compiler 

• Has a typedef declaration for a “visit” function 

• Public methods are virtual 

• Protected methods: setSize, setItem, and 
position 

EECS 268 Programming II 20 



A Binary Search Tree Implementation 
of the ADT Table 

• Reuses BinarySearchTree  

– An instance is a private data member 

• Default constructor and virtual destructor  

• Copy constructor supplied by the compiler 

• Public methods are virtual 

• Protected method: setSize 

EECS 268 Programming II 21 



Priority Queue 

• Binary Search Tree is an excellent data structure, but 
not always 
– simple in concept and implementation 
– BST supports many useful operations well 

• insert, delete, deleteMax, deleteMin, search, searchMax, 
searchMin, sort 

– efficient average case behavior T(n) = O(log n) 

• However, BST is not good in all respects for all 
purposes 
– brittle with respect to balance 
– worst case T(n) = O(n)  

• Balanced Trees are possible but more complex 
 

EECS 268 Programming II 22 



Priority Queue 

• Priority Queue semantics are useful when items 
are added to the set in arbitrary order, but are 
removed in either ascending or descending 
priority order 
– priority can have a flexible definition 

– any property of the set elements imposing a total 
order on the set members 

– If only a partial order is imposed (multiple items with 
equal priority) a secondary tiebreaking rule can be 
used to create a total order 

EECS 268 Programming II 23 



Priority Queue 

• The deletion operation for a priority queue is 
different from the one for a table 

– general ‘delete’ operation is not supported 

– item removed is the one having the highest 
priority value 

• Priority queues do not have retrieval and 
traversal operations 

EECS 268 Programming II 24 



ADT Priority Queue 

25 

Figure 11-8  UML diagram for the class PriorityQueue 



The ADT Priority Queue:  
Possible Implementations 

• Sorted linear implementations 

– Appropriate if the number of items in the priority 
queue is small 

– Array-based implementation 

• Maintains the items sorted in ascending order of 
priority value 

• items[size - 1] has the highest priority 

EECS 268 Programming II 26 

Figure 11-9a  An array-based implementation of the ADT priority queue  



The ADT Priority Queue:  
Possible Implementations 

• Sorted linear implementations (continued) 

– Pointer-based implementation 

• Maintains the items sorted in descending order of 
priority value 

• Item having the highest priority is at beginning of linked 
list 

EECS 268 Programming II 27 

Figure 11-9b  A pointer-based implementation of the ADT priority queue  



The ADT Priority Queue:  
Possible Implementations 

• Binary search tree implementation 

– Appropriate for any priority queue 

– Largest item is rightmost and has at most one 
child 

28 

Figure 11-9c A binary 

search tree 

implementation of the 

ADT priority queue  



The ADT Priority Queue:  
Heap Implementation 

• A heap is a complete binary tree 
– that is empty, OR 

– whose root contains a search key >= the search key in 
each of its children, and whose root has heaps as its 
subtrees 

• Heap is the best approach because it is the most 
efficient for the specific PQ semantics 

• Heap provides a partially ordered tree 
– avoids brittleness of BST and has lower overhead than 

balanced search trees 

EECS 268 Programming II 29 



Heaps 

• Note: 

– The search key in each heap node is >= the search 
keys in each of the node’s  children 

– The search keys of a node’s children have no 
required relationship  

EECS 268 Programming II 30 



Heaps 

• A maximum, binary, heap H is a complete binary 
tree satisfying the heap-ordered tree property: 
– Complete: Every level complete, except possibly the 

last, and all leaves are as far left as possible 

– Heap Ordered: Priority of any node is >= priority of all 
its descendants 

– maximum element of set is thus at root 

• A minimum heap ensures that all nodes have 
priority values <= all its descendants 
– minimum element at root 

 
EECS 268 Programming II 31 



Heap – ADT 

EECS 268 Programming II 32 

Figure 11-10  UML diagram for the class Heap 



Heap – Implementation 

• Considering typical heap operations, for example, 
insert into heap 

• Result must be a complete tree satisfying the heap 
property that all nodes are >= descendants 

• Two step insert process works well 
– insert the new item in the next “open” slot for keeping H a 

complete binary tree 
– restructure H to make it satisfy the heap-ordered property 

• Two step remove 
– client code save root value for use  
– Replace root with “last” node in level-order 
– Restructure H to migrate/percolate new root to the correct 

tree location 

EECS 268 Programming II 33 



Heap – Implementation 

• Traversal of the inserted node to its proper 
place requires at most O(log n) operations  
– since the height of a complete binary tree is  

   O(log n) 

EECS 268 Programming II 34 



Heap – Implementation 

• Deletion is similar 

– always deletes the root of the tree, left with two 
disjoint subtrees 

– place item in last node in the root 

– out of place item in root node should percolate 
down to its proper position 

– O(log n) 

 

EECS 268 Programming II 35 



Heap – Implementation 

• Data structure suitable for heap implementation must 
– support efficient determination of where next and last 

slots in a complete tree are located for insert and delete, 
respectively 

– support efficient percolation of misplaced nodes  

• Percolation down is simple using standard child 
references and comparison of parent to child values 

• Percolation up is almost as simple, but requires a 
parent reference at each node 

• Knowing the last occupied and next open slots under 
different data structures is more subtle under some 
data structures than others 

EECS 268 Programming II 36 



Heap – Implementation 

• Pointer based heaps require two child and one parent 
pointer at each node 
– can use additional state information to track location of 

next and last complete tree slots 

• Array based heap implementation simplifies parent  
and child references by making them calculated 
– lowers space overhead 
– not clear execution time would be lower 

• array index calculation vs. pointer access 

• Similarly, location of the next and last slots for the 
complete tree can be calculated from the number of 
nodes in the tree, which is simple to track 
 

EECS 268 Programming II 37 



Heap – Array Implementation 

• In an array representation of a binary tree T 

– Root of T is at A[0] 

– left and right children of A[i] are at A[2i+1] and 
A[2i+2] 

– parent of a node A[i] is at A[(i-1)/2] 

– for n>1, A[i] is a leaf iff 2i>n 

– in a heap with n elements the last element of the 
complete binary tree is at A[n-1] and the next 
element (element n+1) will be added at A[n] 

EECS 268 Programming II 38 



Heap – Array Implementation 

• An array-based representation is attractive 
– need to know the heap’s maximum size 

• Constant MAX_HEAP 
• Data members 

– items: an array of heap items 
– size: an integer equal to the current number of items in the heap 

 

EECS 268 Programming II 39 



Heap – Array Implementation 

• heapDelete operation with arrays 

• Step 1: Return the item in the root 

– rootItem = items[0] 

EECS 268 Programming II 40 

Figure 11-12a  Disjoint heaps 



Heap – Array Implementation 

• Step 2: Copy the item from the last node into 
the root: items[0]= items[size-1] 

• Step 3: Remove the last node: --size 

– Results in a semiheap 

EECS 268 Programming II 41 

Figure 11-12b  A semiheap 



Heap – Array Implementation 

• Step 3: Transform the semi-heap back into a 
heap 

– use the recursive algorithm heapRebuild 

– the root value trickles down the tree until it is not 
out of place 

• if the root has a smaller search key than the larger of 
the search keys of its children, swap the item in the 
root with that of the larger child 

EECS 268 Programming II 42 



A Heap Implementation of the ADT 
Priority Queue 

• Priority-queue operations and heap 
operations are analogous 

– the priority value in a priority-queue corresponds 
to a heap item’s search key 

• One implementation 

– has an instance of the Heap class as a private data 
member 

– methods call analogous heap operations 

EECS 268 Programming II 43 



A Heap Implementation of the ADT 
Priority Queue 

– disadvantage 
• requires the knowledge of the priority queue’s 

maximum size 

– advantage 
• a heap is always balanced 

• Another implementation  
– a heap of queues 

– useful when a finite number of distinct priority 
values are used, which can result in many items 
having the same priority value 

EECS 268 Programming II 44 



Heapsort 

• Strategy 

– transform the array into a heap 

– remove the heap's root (the largest element) by 
exchanging it with the heap’s last element 

– transforms the resulting semiheap back into a 
heap 

EECS 268 Programming II 45 



Heapsort 

EECS 268 Programming II 46 

Figure 11-17  Transforming the array anArray into a heap 



Heapsort 

• Compared to mergesort 

– both heapsort and mergesort are O(n * log n) in 
both the worst and average cases 

– however, heapsort does not require second array 

• Compared to quicksort 

– quicksort is O(n * log n) in the average case 

– it is generally the preferred sorting method,  even 
though it has poor worst-case efficiency : O(n2)  

EECS 268 Programming II 47 



Summary 

• The ADT table supports value-oriented operations 
• The linear implementations (array based and pointer 

based) of a table are adequate only in limited 
situations 
– when the table is small 
– for certain operations 

• A nonlinear pointer based (binary search tree) 
implementation of the ADT table provides the best 
aspects of the two linear implementations 
– dynamic growth 
– insertions/deletions without extensive data movement 
– efficient searches 

EECS 268 Programming II 48 



Summary 

• A priority queue is a variation of the ADT table 

– its operations allow you to retrieve and remove 
the item with the largest priority value 

• A heap that uses an array-based 
representation of a complete binary tree is a 
good implementation of a priority queue 
when you know the maximum number of 
items that will be stored at any one time 

EECS 268 Programming II 49 



Summary 

• Heapsort, like mergesort, has good worst-case 
and average-case behaviors, but neither sort is 
as good as quicksort in the average case  

• Heapsort has an advantage over mergesort in 
that it does not require a second array 

EECS 268 Programming II 50 


