
Tables, Priority Queues, Heaps 

• Table ADT 

– purpose, implementations 

• Priority Queue ADT 

– variation on Table ADT 

• Heaps 

– purpose, implementation 

– heapsort 
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Table ADT 

• A table in generic terms has M columns and N rows 
– each row contains a separate record  
– each column contains a different component, or field, of  

the same record 

• Each table, or set of data, is also generally sorted, or 
accessed, by a key record component 
– a single set of data can be organized into several different 

tables, sorted according to different keys 

• Another common terms is a dictionary, whose entries 
are records, inserted and accessed according to a key 
value 
– key may be a field in the record or not 
– may also be used as frontends for data base access 
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ADT Table – Example 

• The ADT table, or dictionary 

– Uses a search key to identify its items 

– Its items are records that contain several pieces of 
data 
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ADT Table – Operations 

• A simple and obvious set of operations can be used 
for a wide range of program activities 
– Create and Destroy Table instance 

– Determine the number of items including zero 

– Insert an item in a table using a key value 

– Delete an item with a given key value 

– Retrieve an item with a given key value 

– Retrieve the items in the table (sorted or unsorted) 

• Entries with identical key values maybe forbidden, 
but can be handled with a little imagination  
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The ADT Table 
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• void tableInsert(ItemType& item):  
– store item under its key 

• boolean tableDelete(KeyType 
key_value):  
– delete item with key == key_value, if 

present 

• ItemType* tableRetrieve(KeyType 
key_value):  
– return pointer to item with 

key==key_value 

• void traverseTable(Functor visitor):  
– Functor: a function-object, much like a 

fn pointer 
– visitor is executed for each node in table 



The ADT Table 

• Our table assumes distinct search keys 

– other tables could allow duplicate search keys 

• The traverseTable operation visits table 
items in a specified order 

– one common order is by sorted search key 

– a client-defined visit function is supplied as an 
argument to the traversal 

• called once for each item in the table 
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Selecting an Implementation 

• Linear implementations: Four categories  

– Unsorted: array based or pointer based 

– Sorted (by search key): array based or pointer 
based 
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Figure 11-3  The data members for two sorted linear implementations of the ADT table for the data 

in Figure 11-1: (a) array based; (b) pointer based 



Selecting an Implementation 

8 

Figure 11-4  The data 

members for a binary search 

tree implementation of the 

ADT table for the data in 

Figure 11-1 

• Nonlinear 
implementations 

– Binary search tree 
implementation 
• Offers several advantages 

over linear 
implementations 



Selecting an Implementation 

• The requirements of a particular application 
influence the selection of an implementation 

– Questions to be considered about an application 
before choosing an implementation 

• What operations are needed? 

• How often is each operation required? 

• Are frequently used operations efficient given a 
particular implementation? 
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Comparing Linear Implementations 

• Unsorted array-based implementation 
– Insertion is made efficiently after the last table 

item in an array 

– Deletion usually requires shifting data 

– Retrieval requires a sequential search 
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Figure 11-5a  Insertion for unsorted linear implementations: array based 



Comparing Linear Implementations 

• Sorted array-based implementation 
– Both insertions and deletions require shifting 

data 

– Retrieval can use an efficient binary search  
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Figure 11-6a  Insertion for sorted linear implementations: array based 



Comparing Linear Implementations 

• Unsorted pointer-based implementation 
– No data shifts 
– Insertion is made efficiently at the beginning of a 

linked list 
– Deletion requires a sequential search  
– Retrieval requires a sequential search 

12 Figure 11-5b  Insertion for unsorted linear implementations: pointer based 



Comparing Linear Implementations 

• Sorted pointer-based implementation 
– No data shifts 

– Insertions, deletions, and retrievals each 
require a sequential search  

13 

Figure 11-6b  Insertion for sorted linear implementations: pointer based 



Selecting an Implementation 

• Linear  

– Easy to understand conceptually 

– May be appropriate for small tables or unsorted 
tables with few deletions 

• Nonlinear  

– Is usually a better choice than a linear 
implementation 

– A balanced binary search tree 

• Increases the efficiency of the table operations 
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Selecting an Implementation 
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Figure 11-7  The average-case order of the ADT table operations for various implementations 



Selecting an Implementation for a 
Particular Application 

• Frequent insertions and infrequent traversals in 
no particular order 
– Unsorted linear implementation 

• Frequent retrievals 
– Sorted array-based implementation 

• Binary search 

– Balanced binary search tree 

• Frequent retrievals, insertions, deletions, 
traversals 
– Binary search tree (preferably balanced) 
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Generalized Data Set Management 

• Problem of managing a set of data items occurs 
many times in many contexts 
– arbitrary set of data represented by an arbitrary key 

value within the set 

• Strict separation of the set of data from the key 
helps with abstraction and generalization 

• Data Set 
– class or structure defined in application terms 

• Container class 
– STL terminology 
– holds key and data set items 
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Keyed Base Class 

• Create base class for 
associating key with an 
arbitrary item 

• Maintains key outside the 
item fields 

• Rows of Table are derived 
classes of this class 

• Inserting item in Table 
creates instance of derived 
class and stores it under 
key 

#include <string> 

using namespace std; 

typedef string KeyType; 

 

class KeyedItem 

{ 

public: 

   KeyedItem() {} 

   KeyedItem(const KeyType& 
keyValue) 

   : searchKey(keyValue){} 

   KeyType getKey() const { 

      return searchKey; 

   } 

private: 

   KeyType searchKey; 

}; 
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Table Item Class 

• Create table of cities 
indexed by city name 

• Might create struct for 
each city 

– name, popu., country 

• Or, might derive this 
class from KeyedItem 

• Delegates chosen key to 
base class storage 

class City : public KeyedItem 
{ 
public: 
   City() : KeyedItem() {} 
   City(const string& name, 
            const string& ctry, 
            const int& num)  
    : KeyedItem(name),  
       country(ctry), pop(num) {} 
 
   string cityName() const; 
   int getPopulation() const; 
   void setPopulation(int newPop); 
private: 
   // city's name is search-key value 
   string country;  
   int    pop;  
}; 
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A Sorted Array-Based Implementation 
of the ADT Table 

• Default constructor and virtual destructor  

• Copy constructor supplied by the compiler 

• Has a typedef declaration for a “visit” function 

• Public methods are virtual 

• Protected methods: setSize, setItem, and 
position 
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A Binary Search Tree Implementation 
of the ADT Table 

• Reuses BinarySearchTree  

– An instance is a private data member 

• Default constructor and virtual destructor  

• Copy constructor supplied by the compiler 

• Public methods are virtual 

• Protected method: setSize 
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Priority Queue 

• Binary Search Tree is an excellent data structure, but 
not always 
– simple in concept and implementation 
– BST supports many useful operations well 

• insert, delete, deleteMax, deleteMin, search, searchMax, 
searchMin, sort 

– efficient average case behavior T(n) = O(log n) 

• However, BST is not good in all respects for all 
purposes 
– brittle with respect to balance 
– worst case T(n) = O(n)  

• Balanced Trees are possible but more complex 
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Priority Queue 

• Priority Queue semantics are useful when items 
are added to the set in arbitrary order, but are 
removed in either ascending or descending 
priority order 
– priority can have a flexible definition 

– any property of the set elements imposing a total 
order on the set members 

– If only a partial order is imposed (multiple items with 
equal priority) a secondary tiebreaking rule can be 
used to create a total order 
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Priority Queue 

• The deletion operation for a priority queue is 
different from the one for a table 

– general ‘delete’ operation is not supported 

– item removed is the one having the highest 
priority value 

• Priority queues do not have retrieval and 
traversal operations 
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ADT Priority Queue 
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Figure 11-8  UML diagram for the class PriorityQueue 



The ADT Priority Queue:  
Possible Implementations 

• Sorted linear implementations 

– Appropriate if the number of items in the priority 
queue is small 

– Array-based implementation 

• Maintains the items sorted in ascending order of 
priority value 

• items[size - 1] has the highest priority 
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Figure 11-9a  An array-based implementation of the ADT priority queue  



The ADT Priority Queue:  
Possible Implementations 

• Sorted linear implementations (continued) 

– Pointer-based implementation 

• Maintains the items sorted in descending order of 
priority value 

• Item having the highest priority is at beginning of linked 
list 
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Figure 11-9b  A pointer-based implementation of the ADT priority queue  



The ADT Priority Queue:  
Possible Implementations 

• Binary search tree implementation 

– Appropriate for any priority queue 

– Largest item is rightmost and has at most one 
child 
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Figure 11-9c A binary 

search tree 

implementation of the 

ADT priority queue  



The ADT Priority Queue:  
Heap Implementation 

• A heap is a complete binary tree 
– that is empty, OR 

– whose root contains a search key >= the search key in 
each of its children, and whose root has heaps as its 
subtrees 

• Heap is the best approach because it is the most 
efficient for the specific PQ semantics 

• Heap provides a partially ordered tree 
– avoids brittleness of BST and has lower overhead than 

balanced search trees 
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Heaps 

• Note: 

– The search key in each heap node is >= the search 
keys in each of the node’s  children 

– The search keys of a node’s children have no 
required relationship  
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Heaps 

• A maximum, binary, heap H is a complete binary 
tree satisfying the heap-ordered tree property: 
– Complete: Every level complete, except possibly the 

last, and all leaves are as far left as possible 

– Heap Ordered: Priority of any node is >= priority of all 
its descendants 

– maximum element of set is thus at root 

• A minimum heap ensures that all nodes have 
priority values <= all its descendants 
– minimum element at root 
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Heap – ADT 
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Figure 11-10  UML diagram for the class Heap 



Heap – Implementation 

• Considering typical heap operations, for example, 
insert into heap 

• Result must be a complete tree satisfying the heap 
property that all nodes are >= descendants 

• Two step insert process works well 
– insert the new item in the next “open” slot for keeping H a 

complete binary tree 
– restructure H to make it satisfy the heap-ordered property 

• Two step remove 
– client code save root value for use  
– Replace root with “last” node in level-order 
– Restructure H to migrate/percolate new root to the correct 

tree location 
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Heap – Implementation 

• Traversal of the inserted node to its proper 
place requires at most O(log n) operations  
– since the height of a complete binary tree is  

   O(log n) 
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Heap – Implementation 

• Deletion is similar 

– always deletes the root of the tree, left with two 
disjoint subtrees 

– place item in last node in the root 

– out of place item in root node should percolate 
down to its proper position 

– O(log n) 
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Heap – Implementation 

• Data structure suitable for heap implementation must 
– support efficient determination of where next and last 

slots in a complete tree are located for insert and delete, 
respectively 

– support efficient percolation of misplaced nodes  

• Percolation down is simple using standard child 
references and comparison of parent to child values 

• Percolation up is almost as simple, but requires a 
parent reference at each node 

• Knowing the last occupied and next open slots under 
different data structures is more subtle under some 
data structures than others 
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Heap – Implementation 

• Pointer based heaps require two child and one parent 
pointer at each node 
– can use additional state information to track location of 

next and last complete tree slots 

• Array based heap implementation simplifies parent  
and child references by making them calculated 
– lowers space overhead 
– not clear execution time would be lower 

• array index calculation vs. pointer access 

• Similarly, location of the next and last slots for the 
complete tree can be calculated from the number of 
nodes in the tree, which is simple to track 
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Heap – Array Implementation 

• In an array representation of a binary tree T 

– Root of T is at A[0] 

– left and right children of A[i] are at A[2i+1] and 
A[2i+2] 

– parent of a node A[i] is at A[(i-1)/2] 

– for n>1, A[i] is a leaf iff 2i>n 

– in a heap with n elements the last element of the 
complete binary tree is at A[n-1] and the next 
element (element n+1) will be added at A[n] 
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Heap – Array Implementation 

• An array-based representation is attractive 
– need to know the heap’s maximum size 

• Constant MAX_HEAP 
• Data members 

– items: an array of heap items 
– size: an integer equal to the current number of items in the heap 

 

EECS 268 Programming II 39 



Heap – Array Implementation 

• heapDelete operation with arrays 

• Step 1: Return the item in the root 

– rootItem = items[0] 
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Figure 11-12a  Disjoint heaps 



Heap – Array Implementation 

• Step 2: Copy the item from the last node into 
the root: items[0]= items[size-1] 

• Step 3: Remove the last node: --size 

– Results in a semiheap 
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Figure 11-12b  A semiheap 



Heap – Array Implementation 

• Step 3: Transform the semi-heap back into a 
heap 

– use the recursive algorithm heapRebuild 

– the root value trickles down the tree until it is not 
out of place 

• if the root has a smaller search key than the larger of 
the search keys of its children, swap the item in the 
root with that of the larger child 
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A Heap Implementation of the ADT 
Priority Queue 

• Priority-queue operations and heap 
operations are analogous 

– the priority value in a priority-queue corresponds 
to a heap item’s search key 

• One implementation 

– has an instance of the Heap class as a private data 
member 

– methods call analogous heap operations 
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A Heap Implementation of the ADT 
Priority Queue 

– disadvantage 
• requires the knowledge of the priority queue’s 

maximum size 

– advantage 
• a heap is always balanced 

• Another implementation  
– a heap of queues 

– useful when a finite number of distinct priority 
values are used, which can result in many items 
having the same priority value 
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Heapsort 

• Strategy 

– transform the array into a heap 

– remove the heap's root (the largest element) by 
exchanging it with the heap’s last element 

– transforms the resulting semiheap back into a 
heap 
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Heapsort 
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Figure 11-17  Transforming the array anArray into a heap 



Heapsort 

• Compared to mergesort 

– both heapsort and mergesort are O(n * log n) in 
both the worst and average cases 

– however, heapsort does not require second array 

• Compared to quicksort 

– quicksort is O(n * log n) in the average case 

– it is generally the preferred sorting method,  even 
though it has poor worst-case efficiency : O(n2)  
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Summary 

• The ADT table supports value-oriented operations 
• The linear implementations (array based and pointer 

based) of a table are adequate only in limited 
situations 
– when the table is small 
– for certain operations 

• A nonlinear pointer based (binary search tree) 
implementation of the ADT table provides the best 
aspects of the two linear implementations 
– dynamic growth 
– insertions/deletions without extensive data movement 
– efficient searches 
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Summary 

• A priority queue is a variation of the ADT table 

– its operations allow you to retrieve and remove 
the item with the largest priority value 

• A heap that uses an array-based 
representation of a complete binary tree is a 
good implementation of a priority queue 
when you know the maximum number of 
items that will be stored at any one time 
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Summary 

• Heapsort, like mergesort, has good worst-case 
and average-case behaviors, but neither sort is 
as good as quicksort in the average case  

• Heapsort has an advantage over mergesort in 
that it does not require a second array 
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