
Hash Tables – Outline

• Definition

• Hash functions

• Open hashing

• Closed hashing

– collision resolution techniques

• Efficiency

EECS 268 Programming II 1

Overview

• Implementation style for the Table ADT that is
good in a wide range of situations is the hash
table
– efficient Insert, Delete, and Search operations

– difficult Sorted Traversal

– efficient unsorted traversal

• Good approach as long as sorted output
comparatively rare in the total set of hash
table operations

EECS 268 Programming II 2

Definition

• Hash table is defined by:
– set of records R = { r1, r2, ... , rn} stored by the table
– set of input keys K = { k1, k2,, kn}, n >= 0 that can be

associated with records (kx, ry)

• Array of buckets B[0 ... m-1]: each array element is
capable of holding one or more (kx, ry) pairs

• Hash Function H: K {0, 1, ... , m-1}
– for any given (kx, ry), B[H(kx)] is the designated storage

location for (kx, ry)

• Collision resolution scheme
– when (kx, ry) and (ka, rb) map to the same bucket under H,

this scheme determines where the second record is stored

EECS 268 Programming II 3

Definitions

• An Array of buckets B[0 ... m-1] holds all data
managed by the hash table

• Open or External Hashing
– bucket locations store pointers (references) to record

pairs (kx, ry)
– colliding records stored in a linked list

• Closed or Internal Hashing
– buckets store actual objects
– colliding records stored in other bucket locations

• Note that the associated keys may be implicit
rather than explicitly stored

EECS 268 Programming II 4

Hash Functions

• H(i) = i
– reduces the hash table to an array

• Selecting digits
– choose some subset of digits in a large number

• specific slice or positions

• Folding
– take digits or slices of a number and add them

together with roll-over

• H(i) = i modulo m – where m is Hash Table size
– choosing m as a prime number is popular for an “even

distribution of keys”

EECS 268 Programming II 5

Hash Function – 2

• Strings are a common search key in many cases
– convert string to an integer

– H(string) → integer

• Approaches
– add characters or slices of characters together as n-bit

unsigned numbers with the sum rolling over within x-
bits
• bit shifting to form numbers possible

• x-bits chose for table size or x modulo m

– several other options possible

EECS 268 Programming II 6

Open Hashing

• Example: take a hash table size of 7 (prime) and a hash
function h(x) = x mod 7
– insert 64, 26, 56, 72, 8, 36, 42

• If data set is large compared to hash table size, or the
hash function clusters data, then length of the list
holding the bucket contents can be significant
– sorted list will reduce the average failure time

• can identify failure before the end of the list

– use binary search tree instead of list
• why not a BST for the whole data set?

– use second Hash table

EECS 268 Programming II 7

Open Hashing – 2

• Advantages of Open Hashing with chaining
– simple in concept and implementation

– insertion is always possible

• Disadvantages of hashing with chaining
– unbalanced distribution decreases efficiency

• O(n) for a linked list, O(log n) for a BST

– greater memory overhead

– higher execution overhead of stepping through
pointers

EECS 268 Programming II 8

Closed Hashing

• Closed hashing with Open addressing

– storing all data items within single hash table, but
“open” up the address assigned to item on collision

• Hash table of size m can hold at most m items

• Only a “perfect” hash function will distribute m
items to m different table elements

– collisions will generally occur before table is full

• Collision resolution is thus crucial to efficient use
of closed hash tables

EECS 268 Programming II 9

Closed Hashing – Collision Resolution

• Create a sequence of collision resolution
functions
– h0(x) is base hash function
– h1(x) used to find first alternate storage location after

a collision
– h2(x) used to find the next alternate if first alternate is

occupied

• Each hi(x) must be guaranteed to choose different
table locations

• Hash function series should ideally check all table
locations

EECS 268 Programming II 10

Collision Resolution – Linear Probing

• Search hash table sequentially starting from
the original location specified by the hash
function

– ℎ𝑖 𝑥 = ℎ0 𝑥 + 𝑖 𝑚𝑜𝑑 𝑚, ∀ 𝑖 > 0

• Insert 64, 26, 56, 72, 8, 36, 42 in an empty
table of size 7

• Fragile – causes primary clusters by occupying
adjacent table locations
– similar to long chains in open hashing

EECS 268 Programming II 11

Collision Resolution – Quadratic
Probing

• Spread probed locations across the table

– ℎ𝑖 𝑥 = ℎ0 𝑥 + 𝑖2 𝑚𝑜𝑑 𝑚, ∀ 𝑖 > 0

• Example: Insert 64, 26, 56, 72, 8, 36, 42
• Series of probed locations is not guaranteed to

cover the whole table without duplication
• Closed hashing schemes can fail even though the
• table is not full

– and secondary clusters may form
– if the probing scheme will not visit all table locations

and distribute probes “evenly” over 0..m

EECS 268 Programming II 12

Collision Resolution –
Linear Probing with Fixed Increment

• ℎ𝑖 𝑥 = ℎ0 𝑥 + (𝑖 ∗ 𝐹𝐼) 𝑚𝑜𝑑 𝑚, ∀ 𝑖 > 0

– FI is relatively prime to m

– linear probing will visit all table locations without
repeats

• X is relatively prime to Y iff GCD(X,Y) = 1

EECS 268 Programming II 13

Collision Resolution – Double Hashing

• Use a second hash function (h'(x)) to generate
the probe sequence used after a collision

– ℎ𝑖 𝑥 = ℎ0 𝑥 + (𝑖ℎ′(𝑥)) 𝑚𝑜𝑑 𝑚, ∀ 𝑖 > 0

– Use h’(x)=R – (x mod R), where R < m is prime

• Example: m=7, R=5, insert 64,26,56,72,8,36,42

EECS 268 Programming II 14

Closed Hashing -- Deletions

• Example: Insert 64, 56, 72, 8 using linear probling
– delete 64; delete 8

• Deletion along the probing path from A → B
creates a problem because the empty cell could
be there for two reasons
– no further elements exist along this probing sequence

– deletion of an item along the sequence took place

• Two types of empty buckets
– bucket has always been empty (AE) (flag 0)

– bucket emptied by deletion (ED) (flag 1)

EECS 268 Programming II 15

Closed Hashing -- Deletions

• During a probing sequence,
– if an AE bucket is found, searching can stop
– if an ED bucket is found, searching must continue

• Closed Hashing is thus subject to a form of
“fatigue”
– as cells are deleted, probing sequences generally

lengthen as the probability of encountering ED cells
increases

– failed searches get more expensive because they
cannot terminate until
• an AE cell is found
• all cells of the table can be visited

EECS 268 Programming II 16

Closed Hashing

• Advantages of Closed Hashing with Open Addressing
– lower execution overhead as addresses are calculated rather

than read from pointers in memory
– lower memory overhead as pointers are not stored

• Disadvantages
– more complex than chaining
– can degenerate into linear search due to primary or secondary

clustering
– Delete and Find operations are more complex
– Insert is not always possible even though the table is not full
– Delete can increase probe sequence length by making search

termination conditions ambiguous

EECS 268 Programming II 17

The Efficiency of Hashing

• An analysis of the average-case efficiency

– Load factor

• ratio of the current number of items in the table to the
maximum size of the array table

• measures how full a hash table is

• should not exceed 2/3

– Hashing efficiency for a particular search also
depends on whether the search is successful

• unsuccessful searches generally require more time than
successful searches

EECS 268 Programming II 18

The Efficiency of Hashing

EECS 268 Programming II 19

Summary

• Hash Tables are useful and efficient data structures in a
wide range of applications

• Open hashing with chaining is simple, easy to
implement, and usually efficient
– length of the chains is key to performance

• Closed hashing with various approaches to generating
a probe sequence can also be efficient
– lower space and computation overhead
– more complex implementation
– performance is sensitive to probe sequence

• Monitoring load factor and other hash-table behavior
parameters is important in maintaining performance

EECS 268 Programming II 20

