Definition
Hash functions
Open hashing
Closed hashing

Hash Tables — Outline

— collision resolution techniques

Efficiency

EECS 268 Programming II

Overview

* Implementation style for the Table ADT that is
good in a wide range of situations is the hash

table
— efficient Insert, Delete, and Search operations
— difficult Sorted Traversal
— efficient unsorted traversal

* Good approach as long as sorted output
comparatively rare in the total set of hash
table operations

Definition

Hash table is defined by:

— setof recordsR={r,, r,, ..., r } stored by the table

— set of input keys K = { k;, k,,, k.}, n >= 0 that can be
associated with records (k,, r,)

Array of buckets B[O ... m-1]: each array element is
capable of holding one or more (k,, r,) pairs

Hash Function H: K2 {0, 1, ..., m-1}

— for any given (k,, r,), B[H(k,)] is the designated storage
location for (k,, r,)

Collision resolution scheme

— when (k,, r,) and (k,, r,) map to the same bucket under H,
this scheme determines where the second record is stored

Definitions

* An Array of buckets B[O ... m-1] holds all data
managed by the hash table
* Open or External Hashing

— bucket locations store pointers (references) to record
pairs (k,, r,)

— colliding records stored in a linked list
* Closed or Internal Hashing
— buckets store actual objects
— colliding records stored in other bucket locations

* Note that the associated keys may be implicit
rather than explicitly stored

Hash Functions

e H(i)=i
— reduces the hash table to an array
* Selecting digits
— choose some subset of digits in a large number
* specific slice or positions

* Folding

— take digits or slices of a number and add them
together with roll-over

 H(i) =i modulo m —where m is Hash Table size

— choosing m as a prime number is popular for an “even
distribution of keys”

EECS 268 Programming II

Hash Function — 2

e Strings are a common search key in many cases
— convert string to an integer
— H(string) = integer

* Approaches

— add characters or slices of characters together as n-bit
unsigned numbers with the sum rolling over within x-
bits

* bit shifting to form numbers possible
* Xx-bits chose for table size or x modulo m

— several other options possible

EECS 268 Programming II

Open Hashing

 Example: take a hash table size of 7 (prime) and a hash
function h(x) =x mod 7
— insert 64, 26, 56, 72, 8, 36, 42
e |f data setis large compared to hash table size, or the
hash function clusters data, then length of the list
holding the bucket contents can be significant
— sorted list will reduce the average failure time
* can identify failure before the end of the list

— use binary search tree instead of list
* why not a BST for the whole data set?

— use second Hash table

EECS 268 Programming Il

Open Hashing — 2

* Advantages of Open Hashing with chaining
— simple in concept and implementation
— insertion is always possible

* Disadvantages of hashing with chaining

— unbalanced distribution decreases efficiency
* O(n) for a linked list, O(log n) for a BST

— greater memory overhead

— higher execution overhead of stepping through
pointers

EECS 268 Programming Il

Closed Hashing

Closed hashing with Open addressing

— storing all data items within single hash table, but
“open” up the address assigned to item on collision

Hash table of size m can hold at most m items

Only a “perfect” hash function will distribute m
items to m different table elements
— collisions will generally occur before table is full

Collision resolution is thus crucial to efficient use
of closed hash tables

¥Closed Hashing — Collision Resolution

* Create a sequence of collision resolution
functions
— hy(x) is base hash function

— h,(x) used to find first alternate storage location after
a collision

— h,(x) used to find the next alternate if first alternate is
occupied

* Each h,(x) must be guaranteed to choose different
table locations

* Hash function series should ideally check all table
locations

EECS 268 Programming II 10

o

®/Collision Resolution — Linear Probing

e Search hash table sequentially starting from
the original location specified by the hash
function

—h,(x) = (hy(x) + i) mod m,vi >0
* |nsert 64, 26, 56, 72, 8, 36, 42 in an empty
table of size 7

* Fragile — causes primary clusters by occupying
adjacent table locations

— similar to long chains in open hashing

EECS 268 Programming II

Collision Resolution — Quadratic
Probing

Spread probed locations across the table
— h,(x) = (hy(x) + i*)mod m,Vi >0
Example: Insert 64, 26, 56, 72, 8, 36, 42

Series of probed locations is not guaranteed to
cover the whole table without duplication

Closed hashing schemes can fail even though the

table is not full
— and secondary clusters may form

— if the probing scheme will not visit all table locations
and distribute probes “evenly” over 0..m

EECS 268 Programming II 12

g Collision Resolution —
" Linear Probing with Fixed Increment
* h(x) = (hy(x)+ (i*FI))modm,Vi>0

— Fl is relatively prime to m

— linear probing will visit all table locations without
repeats

e Xisrelatively prime to Y iff GCD(X,Y) =1

EECS 268 Programming II

13

o \
K. o

e Use a second hash function (h'(x)) to generate
the probe sequence used after a collision

— h,(x) = (hy(x) + (ih'(x)))mod m,Vi > 0
— Use h’(x)=R — (x mod R), where R < m is prime

 Example: m=7, R=5, insert 64,26,56,72,8,36,42

EECS 268 Programming II 14

Closed Hashing -- Deletions

 Example: Insert 64, 56, 72, 8 using linear probling
— delete 64; delete 8
* Deletion along the probing path from A - B

creates a problem because the empty cell could
be there for two reasons

— no further elements exist along this probing sequence
— deletion of an item along the sequence took place

* Two types of empty buckets
— bucket has always been empty (AE) (flag 0)
— bucket emptied by deletion (ED) (flag 1)

EECS 268 Programming II 15

Closed Hashing -- Deletions

* During a probing sequence,
— if an AE bucket is found, searching can stop
— if an ED bucket is found, searching must continue

* Closed Hashing is thus subject to a form of
“fatigue”
— as cells are deleted, probing sequences generally

lengthen as the probability of encountering ED cells
Increases

— failed searches get more expensive because they
cannot terminate until
* an AE cell is found
 all cells of the table can be visited

EECS 268 Programming II

Closed Hashing

e Advantages of Closed Hashing with Open Addressing

lower execution overhead as addresses are calculated rather
than read from pointers in memory

lower memory overhead as pointers are not stored

Disadvantages

more complex than chaining

can degenerate into linear search due to primary or secondary
clustering

Delete and Find operations are more complex
Insert is not always possible even though the table is not full

Delete can increase probe sequence length by making search
termination conditions ambiguous

EECS 268 Programming II

The Efficiency of Hashing

* An analysis of the average-case efficiency

— Load factor o

e ratio of the current number of items in the table to the
maximum size of the array table

e measures how full a hash table is
* should not exceed 2/3

— Hashing efficiency for a particular search also
depends on whether the search is successful

» unsuccessful searches generally require more time than
successful searches

EECS 268 Programming II 18

Average number of comparisons

16

14

12

10

The Efficiency of Hashing

Successful search

Linear probing

20

18

16

14

12

10

Average number of comparions

Quadratic probing,
/ double hashing 2
Separate chaining

—_—

0.2

I v 1 " I v 1
04 06 08 1.0
o

EECS 268 Programming II

Unsuccessful search

Linear probing

Quaderatic probing,
double hashing

/ Separate chaining

02 04 06 08 10
o

19

Summary

Hash Tables are useful and efficient data structures in a
wide range of applications

Open hashing with chaining is simple, easy to
implement, and usually efficient

— length of the chains is key to performance

Closed hashing with various approaches to generating
a probe sequence can also be efficient

— lower space and computation overhead

— more complex implementation

— performance is sensitive to probe sequence

Monitoring load factor and other hash-table behavior
parameters is important in maintaining performance

