
Chapter 3: Data Abstraction 

• Abstraction, modularity, information hiding 

• Abstract data types 

• Example-1: List ADT 

• Example-2: Sorted list ADT 

• C++ Classes 

• C++ Namespaces 

• C++ Exceptions 
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Modularity and Abstraction 

• Important when developing large programs. 

• Divide program in small manageable modules 

– each module understood individually 

– easier to write, understand, modify, and debug 

• Modules communicate using well-defined 
interfaces 

– different module implementations use same interface 

– provide a different and easier interface to 
communicating modules – abstraction 
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Fundamental Concepts 

• Modularity 

– manages complexity of large programs 

– isolates errors 

– eliminates redundancies 

– program is easier to read, write, and modify 

• Information hiding 

– hides certain implementation details within a module 

– makes these details inaccessible from outside the 
module 
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Abstraction 

• Functional abstraction 
– separates the purpose and use of a module from its 

implementation 

– module’s specifications only details its behavior, 
independent of the module’s implementation 

• Data abstraction 
– asks you to think what you can do to a collection of 

data independently of how you do it 

– allows you to develop each data structure in relative 
isolation from the rest of the solution 
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Isolated Tasks 
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Isolation of Modules is Not Total 

• A function’s specification, or contract, governs 
how it interacts with other modules 
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Figure 3-2  A slit in the wall 
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Abstract Data Type (ADT) 

• An ADT is composed of 

– collection of data 

– set of operations on that data 

• Specifications of an ADT indicate 

– what the ADT operations do, not how to 
implement them 

• Implementation of an ADT 

– includes choosing a particular data structure 
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Abstract Data Types 
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Figure 3-4 

A wall of ADT operations isolates a data structure from the program that uses it 
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Designing an ADT 

• The design of an ADT should evolve naturally 
during the problem-solving process 

• Questions to ask when designing an ADT 

– What data does a problem require? 

– What operations does a problem require? 
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List ADT Example 

• ADT for a list of items: grocery list, TO-DO list 

• What operations do we perform on/with a list? 

– add item, delete item, find item, read, etc. 

– cannot think of everything?  

• should refine iteratively! 

• How to store the data 

– implementation detail hidden from users of the list 

– arrays or linked lists 
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List ADT Example – Properties 

• Except for the first and last items, each item has a 
unique predecessor and successor 

• Items are referenced by their position in the list 

• Specifications of the ADT operations 
– Define an operation contract for the ADT list 

– Do not specify how to store the list or how to perform 
the operations 

• ADT operations can be used in an application 
without the knowledge of how the operations 
will be implemented 
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List ADT Example – Operations 

• Create an empty list 

• Destroy a list 

• Determine whether a list is empty 

• Determine the number of items in a list 

• Insert an item at a given position in the list 

• Delete the item at a given position in the list 

• Retrieve the item at a given position in the list 
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List ADT – Operation Contract 

• createList() 
• destroyList() 
• isEmpty():boolean {query} 
• getLength():integer {query} 
• insert(in index:integer, in newItem:ListItemType, 

         out success:boolean) 
• remove(in index:integer, out success:boolean) 
• retrieve(in index:integer, dItem:ListItemType, 
             out success:boolean) {query} 
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List ADT Example – Operations 

• Create the list -- milk, eggs, butter 
– aList.createList()  
– aList.insert(1, milk, success) 
– aList.insert(2, eggs, success) 
– aList.insert(3, butter, success) 

• Insert bread after milk  
– aList.insert(2, bread, success) 
     milk, bread, eggs, butter 

• Insert juice at end of list  
– aList.insert(5, juice, success) 
     milk, bread, eggs, butter, juice 
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List ADT Example – Operations 

• Remove eggs  

– aList.remove(3, success) 

–  milk, bread, butter, juice 

• Insert apples at beginning of list  

– aList.insert(1, apples, success) 

–  apples, milk, bread, butter, juice 
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List ADT Example -- Operations 

• Algorithm description independent of list 
implementation, as long as each item has an 
index 

• Pseudocode function that displays a list 

    displayList(in aList:List){ 

         for (position=1 to aList.getLength()){ 

               aList.retrieve(position, dataItem, success) 

     display dataItem 

 } 

    } 
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List ADT Example -- Implementation 

• How to implement the List ADT ? 

• A list’s kth  item is stored in items[k-1] 

 

 

• To insert an item, make room in the array 
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List ADT Example -- Implementation 

• To delete an item, remove gap in array 
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Figure 3-13  (a) Deletion causes a gap; (b) fill gap by shifting 



List ADT – Options 

• Many other design options are possible 

– retrieve items by name, instead of by index 

– sort items by name or some other factor 

– display list in some sorted order 

• Several data structures can be used during 
implementation 

– arrays, linked lists, trees, hash-tables, etc. 

– different advantages, restrictions, and costs 

19 EECS 268 Programming II 



ADT Sorted List -- Properties 

• Maintains items in sorted order 

• Inserts and deletes items by their values, not 
their positions 
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ADT Sorted List – Operation Contract 

• sortedIsEmpty():boolean{query} 
• sortedGetLength():integer{query} 
• sortedInsert(in nItem:ListItemType, out success:boolean) 
• sortedRemove(in index:integer,  out success :boolean) 
• sortedRetrieve(in index:integer,  out  dItem:ListItemType, 

                               out success :boolean){query} 

• locatePosition(in anItem:ListItemType,                           
                              out isPresent:boolean):integer{query} 

21 EECS 268 Programming II see Table on pages 133-134 



Implementing ADTs 

• Choosing the data structure to represent the 
ADT’s data is a part of implementation 

– Choice of a data structure depends on 

• Details of the ADT’s operations 

• Context in which the operations will be used 

• Implementation details should be hidden 
behind a wall of ADT operations 

– A program (client) should only be able to access 
the data structure by using the ADT operations 
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Hiding Data Structures and Code 
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Figure 3-8 

ADT operations provide access to a data structure 



Violating Information Hiding  
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Figure 3-9  Violating the wall of ADT operations 
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C++ Classes 

• Encapsulation combines an ADT’s data with its 
operations to form an object  
– an object is an instance of a class 
– a class defines a new data type 
– a class contains data members and methods (member 

functions) 
– by default, all data members in a class are private 

• but, can specify them as public 
• can only be accessed by other class members 

– some member functions have to be public 
– encapsulation hides implementation details 
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C++ Classes 
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Figure 3-10 

An object’s data and methods 

are encapsulated 



C++ Classes 

• Each class definition is placed in a header file 

– Classname.h 

• The implementation of a class’s methods are 
placed in an implementation file 

– Classname.cpp 
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C++ Classes: Constructors 

• Constructors 
– create and initialize new instances of a class 

• invoked when you declare an instance of the class 

– have the same name as the class 

– have no return type, not even void 

• A class can have several constructors 
– a default constructor has no arguments 

– compiler will generate a default constructor if you 
do not define any constructors 
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C++ Classes: Constructors 

• The implementation of a method qualifies its 
name with the scope resolution operator ::  

• The implementation of a constructor 
– sets data members to initial values 

– can use an initializer 

 Sphere::Sphere() : theRadius(1.0) 

 { 

 }  // end default constructor 

– cannot use return to return a value 
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C++ Classes: Destructors 

• Destructor 
– destroys an instance of an object when the object’s 

lifetime ends 

– called automatically for local variables on subroutine exit 

– called explicitly by delete operator 

– primary duty is to de-allocate dynamic memory 

• Each class has one destructor 
– for many classes, you can omit the destructor 

• if they do not allocate any memory 

– the compiler will generate a destructor if you do not define 
one 
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C++ Classes: The header file 
/** @file Sphere.h */ 

const double PI = 3.14159; 

class Sphere 

{ 

public: 

  Sphere();                     // Default constructor 

  Sphere(double initialRadius); // Constructor 

  void setRadius(double newRadius); 

  double getRadius() const;  // can’t change data members 

  double getDiameter() const; 

  double getCircumference() const; 

  double getArea() const; 

  double getVolume() const; 

  void displayStatistics() const; 

private: 

 double theRadius;       // data members should be private 

};  // end Sphere 
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C++ Classes: The implementation file 

/** @file Sphere.cpp */ 

#include <iostream> 

#include "Sphere.h"   // header file 

using namespace std; 

Sphere::Sphere() : theRadius(1.0) 

{ 

}  // end default constructor 

 

Sphere::Sphere(double initialRadius) 

{ 

   if (initialRadius > 0) 

      theRadius = initialRadius; 

   else 

      theRadius = 1.0; 

}  // end constructor 
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C++ Classes: The implementation file 

void Sphere::setRadius(double newRadius) 

{ 

   if (newRadius > 0) 

      theRadius = newRadius; 

   else 

      theRadius = 1.0; 

}  // end setRadius 

 

• The constructor could call setRadius 
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C++ Classes: The implementation file 
double Sphere::getRadius() const 

{ 

   return theRadius; 

}  // end getRadius 

. . . 

 

double Sphere::getArea() const 

{ 

   return 4.0 * PI * theRadius * theRadius; 

}  // end getArea 

. . . 
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C++ Classes: Using the class Sphere 

#include <iostream> 

#include "Sphere.h"   // header file 

using namespace std; 

int main()  // the client 

{ 

   Sphere unitSphere; 

   Sphere mySphere(5.1); 

   cout << mySphere.getDiameter() << endl; 

   . . . 

}  // end main 
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Inheritance in C++ 

• Inheritance is a way to reuse the code (and 
behavior) of existing classes 
• existing class is called the base or super  or parent 

class 

• the new class is called derived or sub class 

• Derived class inherits any of the publicly defined 
methods or data members of a base class 
• public members are accessible by any function 

• protected members are accessible only in base and 
derived classes 
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Inheritance in C++ 

• Derived classes can add new data members and 
member functions 
– methods with the same prototype (name as well as 

number and types of arguments) in the derived class 
override base class methods 

– distinct from overloading – same function name but 
different set of parameters 

• An instance of a derived class is considered to also be 
an instance of the base class 
– can be used anywhere an instance of the base class can be 

used 

• An instance of a derived class can invoke public 
methods of the base class 
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Inheritance – Example 

 

#include “Sphere.h” 

enum Color {RED, BLUE, GREEN, YELLOW}; 

class ColoredSphere: public Sphere 

{ 

public: 

… 

 Color getColor() const; 

… 

private: 

   Color c; 

}  // end ColoredSphere 
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C++ Namespaces 

• Mechanism for logically grouping declarations 
and definitions into one declarative region 

• The contents of the namespace can be 
accessed by code inside or outside the 
namespace 

– use the scope resolution operator (::) to access 
elements from outside the namespace 

– alternatively, the using declaration allows the 
names of the elements to be used directly 
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C++ Namespaces 

• Creating a namespace 
namespace smallNamespace 

{ 

  int count = 0; 

  void abc(); 

} // end smallNamespace 

 

• Using a namespace 
using namespace smallNamespace; 

count +=1; 

abc();  

40 
see C3-namespace.cpp 
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C++ Exceptions 

• Mechanism for handling errors at runtime 

– pre-defined as well as user-defined 

– default action is often to kill the program 

• A function can indicate that an error has 
occurred by throwing an exception 

• Code that deals with the exception is said to 
handle it 

– uses a try block and catch blocks 

41 EECS 268 Programming II 



C++ Exceptions 

• Place a statement that might throw an exception 
within a try block 
 try { statement(s); } 

• Write a catch block for each type of exception handled 
– order is not important 

catch(ExceptionClass identifier) { 

   statement(s); 

} 

catch(ExceptionClass identifier2) { 

   statement(s); 

} 
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C++ Exceptions 

• When a statement in a try block causes an 
exception 
– rest of try block is ignored 

• destructors of objects local to the block are called 

– control passes to catch block corresponding to the 
exception 

– after a catch block executes, control passes to 
statement after last catch block associated with the 
try block 

– if a catch block for the exception is not found, the 
program typically aborts 

43 
see C3-exceptions.cpp 

EECS 268 Programming II 



C++ Exceptions 

• Throwing exceptions 

– A throw statement throws an exception 

– Methods that throw an exception have a throw clause 
   void myMethod(int x) throw(MyException) 

   { 

     if (. . .) 

        throw MyException(“MyException: …”); 

    . . . 

   }  // end myMethod 

• You can use an exception class in the C++ 
Standard Library or define your own 
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List Implemented Using Exceptions 

• We define two exception classes 
#include <stdexcept> 

#include <string> 

using namespace std; 

class ListIndexOutOfRangeException :  

      public out_of_range 

{ 

public: 

   ListIndexOutOfRangeException(const string &  

                                message = “”) 

                     : out_of_range(message.c_str()) 

{} 

}; // end ListException 
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List Implemented Using Exceptions 

#include <stdexcept> 

#include <string> 

using namespace std; 

class ListException : public logic_error 

{ 

public: 

  ListException(const string & message = “”) 

                     : logic_error(message.c_str()) 

{} 

}; // end ListException 
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List Implemented Using Exceptions 

/** @file ListAexcept.h */ 

#include “ListException.h” 

#include “ListIndexOutOfRangeException.h” 

 . . . 

class List 

{ 

public: 

   . . . 

   void insert(int index,  

               const ListItemType& newItem) 

        throw(ListIndexOutOfRangeException,  

              ListException); 

   . . . 

}  // end List 
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List Implemented Using Exceptions 

/** @file ListAexcept.cpp */ 

void List::insert(int index,  

                  const ListItemType& newItem) 

           throw(ListIndexOutOfRangeException,  

                 ListException); 

{ 

   if (size > MAX_LIST) 

      throw ListException(“ListException: ” + 

                          “List full on insert”); 

   . . . 

}  // end insert 
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Summary 

• Data abstraction controls the interaction 
between a program and its data structures 

• Abstract data type (ADT):  a set of data-
management operations together with the 
data values upon which they operate 

• Define an ADT fully before making any 
decisions about an implementation  

• C++ classes used to implement ADT 
– encapsulates both data and operations 
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Summary 

• Members of a class are private by default 

– data members are typically private 

– public methods can be provided to access them 

• Namespace: a mechanism to group classes, 
functions, variables, types, and constants 

• You can throw an exception if you detect an 
error during program execution 

– use try and catch blocks to handle exceptions 
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