
Chapter 3: Data Abstraction

• Abstraction, modularity, information hiding

• Abstract data types

• Example-1: List ADT

• Example-2: Sorted list ADT

• C++ Classes

• C++ Namespaces

• C++ Exceptions

EECS 268 Programming II 1

Modularity and Abstraction

• Important when developing large programs.

• Divide program in small manageable modules

– each module understood individually

– easier to write, understand, modify, and debug

• Modules communicate using well-defined
interfaces

– different module implementations use same interface

– provide a different and easier interface to
communicating modules – abstraction

2 EECS 268 Programming II

Fundamental Concepts

• Modularity

– manages complexity of large programs

– isolates errors

– eliminates redundancies

– program is easier to read, write, and modify

• Information hiding

– hides certain implementation details within a module

– makes these details inaccessible from outside the
module

3 EECS 268 Programming II

Abstraction

• Functional abstraction
– separates the purpose and use of a module from its

implementation

– module’s specifications only details its behavior,
independent of the module’s implementation

• Data abstraction
– asks you to think what you can do to a collection of

data independently of how you do it

– allows you to develop each data structure in relative
isolation from the rest of the solution

4 EECS 268 Programming II

Isolated Tasks

5 EECS 268 Programming II

Isolation of Modules is Not Total

• A function’s specification, or contract, governs
how it interacts with other modules

6

Figure 3-2 A slit in the wall

EECS 268 Programming II

Abstract Data Type (ADT)

• An ADT is composed of

– collection of data

– set of operations on that data

• Specifications of an ADT indicate

– what the ADT operations do, not how to
implement them

• Implementation of an ADT

– includes choosing a particular data structure

7 EECS 268 Programming II

Abstract Data Types

8

Figure 3-4

A wall of ADT operations isolates a data structure from the program that uses it

EECS 268 Programming II

Designing an ADT

• The design of an ADT should evolve naturally
during the problem-solving process

• Questions to ask when designing an ADT

– What data does a problem require?

– What operations does a problem require?

9 EECS 268 Programming II

List ADT Example

• ADT for a list of items: grocery list, TO-DO list

• What operations do we perform on/with a list?

– add item, delete item, find item, read, etc.

– cannot think of everything?

• should refine iteratively!

• How to store the data

– implementation detail hidden from users of the list

– arrays or linked lists

10 EECS 268 Programming II

List ADT Example – Properties

• Except for the first and last items, each item has a
unique predecessor and successor

• Items are referenced by their position in the list

• Specifications of the ADT operations
– Define an operation contract for the ADT list

– Do not specify how to store the list or how to perform
the operations

• ADT operations can be used in an application
without the knowledge of how the operations
will be implemented

11 EECS 268 Programming II

List ADT Example – Operations

• Create an empty list

• Destroy a list

• Determine whether a list is empty

• Determine the number of items in a list

• Insert an item at a given position in the list

• Delete the item at a given position in the list

• Retrieve the item at a given position in the list

12 EECS 268 Programming II

List ADT – Operation Contract

• createList()
• destroyList()
• isEmpty():boolean {query}
• getLength():integer {query}
• insert(in index:integer, in newItem:ListItemType,

 out success:boolean)
• remove(in index:integer, out success:boolean)
• retrieve(in index:integer, dItem:ListItemType,
 out success:boolean) {query}

13 EECS 268 Programming II see Table on pages 128-129

List ADT Example – Operations

• Create the list -- milk, eggs, butter
– aList.createList()
– aList.insert(1, milk, success)
– aList.insert(2, eggs, success)
– aList.insert(3, butter, success)

• Insert bread after milk
– aList.insert(2, bread, success)
 milk, bread, eggs, butter

• Insert juice at end of list
– aList.insert(5, juice, success)
 milk, bread, eggs, butter, juice

14 EECS 268 Programming II

List ADT Example – Operations

• Remove eggs

– aList.remove(3, success)

– milk, bread, butter, juice

• Insert apples at beginning of list

– aList.insert(1, apples, success)

– apples, milk, bread, butter, juice

15 EECS 268 Programming II

List ADT Example -- Operations

• Algorithm description independent of list
implementation, as long as each item has an
index

• Pseudocode function that displays a list

 displayList(in aList:List){

 for (position=1 to aList.getLength()){

 aList.retrieve(position, dataItem, success)

 display dataItem

 }

 }

16 EECS 268 Programming II

List ADT Example -- Implementation

• How to implement the List ADT ?

• A list’s kth item is stored in items[k-1]

• To insert an item, make room in the array

17 EECS 268 Programming II

List ADT Example -- Implementation

• To delete an item, remove gap in array

18

Figure 3-13 (a) Deletion causes a gap; (b) fill gap by shifting

List ADT – Options

• Many other design options are possible

– retrieve items by name, instead of by index

– sort items by name or some other factor

– display list in some sorted order

• Several data structures can be used during
implementation

– arrays, linked lists, trees, hash-tables, etc.

– different advantages, restrictions, and costs

19 EECS 268 Programming II

ADT Sorted List -- Properties

• Maintains items in sorted order

• Inserts and deletes items by their values, not
their positions

20 EECS 268 Programming II

ADT Sorted List – Operation Contract

• sortedIsEmpty():boolean{query}
• sortedGetLength():integer{query}
• sortedInsert(in nItem:ListItemType, out success:boolean)
• sortedRemove(in index:integer, out success :boolean)
• sortedRetrieve(in index:integer, out dItem:ListItemType,

 out success :boolean){query}

• locatePosition(in anItem:ListItemType,
 out isPresent:boolean):integer{query}

21 EECS 268 Programming II see Table on pages 133-134

Implementing ADTs

• Choosing the data structure to represent the
ADT’s data is a part of implementation

– Choice of a data structure depends on

• Details of the ADT’s operations

• Context in which the operations will be used

• Implementation details should be hidden
behind a wall of ADT operations

– A program (client) should only be able to access
the data structure by using the ADT operations

22 EECS 268 Programming II

Hiding Data Structures and Code

EECS 268 Programming II 23

Figure 3-8

ADT operations provide access to a data structure

Violating Information Hiding

24

Figure 3-9 Violating the wall of ADT operations

EECS 268 Programming II

C++ Classes

• Encapsulation combines an ADT’s data with its
operations to form an object
– an object is an instance of a class
– a class defines a new data type
– a class contains data members and methods (member

functions)
– by default, all data members in a class are private

• but, can specify them as public
• can only be accessed by other class members

– some member functions have to be public
– encapsulation hides implementation details

25 EECS 268 Programming II

C++ Classes

EECS 268 Programming II 26

Figure 3-10

An object’s data and methods

are encapsulated

C++ Classes

• Each class definition is placed in a header file

– Classname.h

• The implementation of a class’s methods are
placed in an implementation file

– Classname.cpp

27 EECS 268 Programming II

C++ Classes: Constructors

• Constructors
– create and initialize new instances of a class

• invoked when you declare an instance of the class

– have the same name as the class

– have no return type, not even void

• A class can have several constructors
– a default constructor has no arguments

– compiler will generate a default constructor if you
do not define any constructors

28 EECS 268 Programming II

C++ Classes: Constructors

• The implementation of a method qualifies its
name with the scope resolution operator ::

• The implementation of a constructor
– sets data members to initial values

– can use an initializer

 Sphere::Sphere() : theRadius(1.0)

 {

 } // end default constructor

– cannot use return to return a value

29 EECS 268 Programming II

C++ Classes: Destructors

• Destructor
– destroys an instance of an object when the object’s

lifetime ends

– called automatically for local variables on subroutine exit

– called explicitly by delete operator

– primary duty is to de-allocate dynamic memory

• Each class has one destructor
– for many classes, you can omit the destructor

• if they do not allocate any memory

– the compiler will generate a destructor if you do not define
one

30 EECS 268 Programming II

C++ Classes: The header file
/** @file Sphere.h */

const double PI = 3.14159;

class Sphere

{

public:

 Sphere(); // Default constructor

 Sphere(double initialRadius); // Constructor

 void setRadius(double newRadius);

 double getRadius() const; // can’t change data members

 double getDiameter() const;

 double getCircumference() const;

 double getArea() const;

 double getVolume() const;

 void displayStatistics() const;

private:

 double theRadius; // data members should be private

}; // end Sphere

31 EECS 268 Programming II

C++ Classes: The implementation file

/** @file Sphere.cpp */

#include <iostream>

#include "Sphere.h" // header file

using namespace std;

Sphere::Sphere() : theRadius(1.0)

{

} // end default constructor

Sphere::Sphere(double initialRadius)

{

 if (initialRadius > 0)

 theRadius = initialRadius;

 else

 theRadius = 1.0;

} // end constructor

32 EECS 268 Programming II

C++ Classes: The implementation file

void Sphere::setRadius(double newRadius)

{

 if (newRadius > 0)

 theRadius = newRadius;

 else

 theRadius = 1.0;

} // end setRadius

• The constructor could call setRadius

33 EECS 268 Programming II

C++ Classes: The implementation file
double Sphere::getRadius() const

{

 return theRadius;

} // end getRadius

. . .

double Sphere::getArea() const

{

 return 4.0 * PI * theRadius * theRadius;

} // end getArea

. . .

34 EECS 268 Programming II

C++ Classes: Using the class Sphere

#include <iostream>

#include "Sphere.h" // header file

using namespace std;

int main() // the client

{

 Sphere unitSphere;

 Sphere mySphere(5.1);

 cout << mySphere.getDiameter() << endl;

 . . .

} // end main

35 EECS 268 Programming II

Inheritance in C++

• Inheritance is a way to reuse the code (and
behavior) of existing classes
• existing class is called the base or super or parent

class

• the new class is called derived or sub class

• Derived class inherits any of the publicly defined
methods or data members of a base class
• public members are accessible by any function

• protected members are accessible only in base and
derived classes

 36 EECS 268 Programming II

Inheritance in C++

• Derived classes can add new data members and
member functions
– methods with the same prototype (name as well as

number and types of arguments) in the derived class
override base class methods

– distinct from overloading – same function name but
different set of parameters

• An instance of a derived class is considered to also be
an instance of the base class
– can be used anywhere an instance of the base class can be

used

• An instance of a derived class can invoke public
methods of the base class

37 EECS 268 Programming II

Inheritance – Example

#include “Sphere.h”

enum Color {RED, BLUE, GREEN, YELLOW};

class ColoredSphere: public Sphere

{

public:

…

 Color getColor() const;

…

private:

 Color c;

} // end ColoredSphere

38 EECS 268 Programming II

C++ Namespaces

• Mechanism for logically grouping declarations
and definitions into one declarative region

• The contents of the namespace can be
accessed by code inside or outside the
namespace

– use the scope resolution operator (::) to access
elements from outside the namespace

– alternatively, the using declaration allows the
names of the elements to be used directly

39 EECS 268 Programming II

C++ Namespaces

• Creating a namespace
namespace smallNamespace

{

 int count = 0;

 void abc();

} // end smallNamespace

• Using a namespace
using namespace smallNamespace;

count +=1;

abc();

40
see C3-namespace.cpp

EECS 268 Programming II

C++ Exceptions

• Mechanism for handling errors at runtime

– pre-defined as well as user-defined

– default action is often to kill the program

• A function can indicate that an error has
occurred by throwing an exception

• Code that deals with the exception is said to
handle it

– uses a try block and catch blocks

41 EECS 268 Programming II

C++ Exceptions

• Place a statement that might throw an exception
within a try block
 try { statement(s); }

• Write a catch block for each type of exception handled
– order is not important

catch(ExceptionClass identifier) {

 statement(s);

}

catch(ExceptionClass identifier2) {

 statement(s);

}

42 EECS 268 Programming II

C++ Exceptions

• When a statement in a try block causes an
exception
– rest of try block is ignored

• destructors of objects local to the block are called

– control passes to catch block corresponding to the
exception

– after a catch block executes, control passes to
statement after last catch block associated with the
try block

– if a catch block for the exception is not found, the
program typically aborts

43
see C3-exceptions.cpp

EECS 268 Programming II

C++ Exceptions

• Throwing exceptions

– A throw statement throws an exception

– Methods that throw an exception have a throw clause
 void myMethod(int x) throw(MyException)

 {

 if (. . .)

 throw MyException(“MyException: …”);

 . . .

 } // end myMethod

• You can use an exception class in the C++
Standard Library or define your own

44 EECS 268 Programming II

List Implemented Using Exceptions

• We define two exception classes
#include <stdexcept>

#include <string>

using namespace std;

class ListIndexOutOfRangeException :

 public out_of_range

{

public:

 ListIndexOutOfRangeException(const string &

 message = “”)

 : out_of_range(message.c_str())

{}

}; // end ListException

45 EECS 268 Programming II

List Implemented Using Exceptions

#include <stdexcept>

#include <string>

using namespace std;

class ListException : public logic_error

{

public:

 ListException(const string & message = “”)

 : logic_error(message.c_str())

{}

}; // end ListException

46 EECS 268 Programming II

List Implemented Using Exceptions

/** @file ListAexcept.h */

#include “ListException.h”

#include “ListIndexOutOfRangeException.h”

 . . .

class List

{

public:

 . . .

 void insert(int index,

 const ListItemType& newItem)

 throw(ListIndexOutOfRangeException,

 ListException);

 . . .

} // end List

47 EECS 268 Programming II

List Implemented Using Exceptions

/** @file ListAexcept.cpp */

void List::insert(int index,

 const ListItemType& newItem)

 throw(ListIndexOutOfRangeException,

 ListException);

{

 if (size > MAX_LIST)

 throw ListException(“ListException: ” +

 “List full on insert”);

 . . .

} // end insert

48 EECS 268 Programming II

Summary

• Data abstraction controls the interaction
between a program and its data structures

• Abstract data type (ADT): a set of data-
management operations together with the
data values upon which they operate

• Define an ADT fully before making any
decisions about an implementation

• C++ classes used to implement ADT
– encapsulates both data and operations

49 EECS 268 Programming II

Summary

• Members of a class are private by default

– data members are typically private

– public methods can be provided to access them

• Namespace: a mechanism to group classes,
functions, variables, types, and constants

• You can throw an exception if you detect an
error during program execution

– use try and catch blocks to handle exceptions

50 EECS 268 Programming II

