
Chapter 4: (Pointers and) Linked Lists

• Pointer variables

• Operations on pointer variables

• Linked lists

• Operations on linked lists

• Variations on simple linked lists

– doubly linked lists

– circular linked lists

EECS 268 Programming II 1

Pointer Variables

• Declaring a variable creates space for it
– in a region of process memory called stack

– each memory cell has an address
• memory can be considered to be linearly addressed starting

from 0 to MAX

int var = 268;

• Use pointers to refer to variables indirectly by
pointing at them

2

var

0x498

268 … … … … … … …
0x000 0x999

EECS 268 Programming II

Pointer Variable – Declaration

• A pointer contains the location, or address in
memory, of a memory cell

• Declaration of an integer pointer variable p

– static allocation; initially undefined, but not NULL

int var = 268;

int *p;

3

0x498

268 … … … … NA … …
0x000 0x999

var p

0x490

EECS 268 Programming II

Pointer Variable – Assignment

• Can assign address of any variable (including another
pointer variable) to the pointer variable
int var = 268;
int *p = &var;

• Indirect updates through pointer variables
*p = 168;

4

0x498

268 … … … … 0x498 … …
0x000 0x999

var p

0x490

0x498

168 … … … … 0x498 … …
0x000 0x999

var p

0x490

EECS 268 Programming II

Pointer Variable – Assignment

• & : address-of operator
• * : used for “de-reference” a pointer

– expression *p represents the memory cell to which p
points

• Pointer variables are also variables!
– need space in memory
– can have pointer variables pointing to other pointer

variables
int a, *p, **pp;
p = &a;
pp = &p;

5 EECS 268 Programming II

Pointer Variable – Types

• All pointer variables hold integer addresses, but
have types
– very important during pointer arithmetic

int a, *ip = &a, **pp;

char c, *cp = &c;

ip ++; // increments value in ‘ip’ by 4/8

cp ++; // increments value in ‘cp’ by 1

pp = &a; // Is this valid ?

• Multiple/divide with pointer variables generally is
not meaningful

6 see C4-pointers.cpp EECS 268 Programming II

New Operator

• All declared variables, arrays are statically
assigned space (on the stack) by the compiler

• Can also allocate space dynamically at runtime
– use the new operator

int *p = new int;

double *dp = new double(4.5);

my_class *instance = new my_class();

– if the operator new cannot allocate memory, it throws
the exception std::bad_alloc (in the <new> header)
• very uncommon

7 EECS 268 Programming II

Delete Operator

• Memory available to a program is limited

– return dynamically allocated memory to the
system if no longer needed

– use the delete operator

int *p = new int(268);

cout << “Integer is: “ << *p;

delete p;

8 see C4-funcarg.cpp EECS 268 Programming II

De-allocating Memory

• delete leaves the variable contents undefined

– a pointer to a deallocated memory (*p) cell is
possible and dangerous

– deallocated memory can be reassigned after
another call to new

– so, indirect reference through ‘p’ after delete
refers to undefined memory

– called the dangling pointer error

– p = NULL; // safeguard

9 see C4-dangling.cpp EECS 268 Programming II

Memory Leak

• A memory leak is another common problem
when using pointers and dynamic memory
– happens when allocated memory can no longer be

reached

– so, cannot be de-allocated!

– wastes memory resources, eventually system will run
out of memory

int i, *ip;

ip = new int(268);

ip = &i; // memory leak!

10 EECS 268 Programming II

Pointer Examples

11 EECS 268 Programming II

Pointers

12 EECS 268 Programming II

Best Practices

• Memory allocated using new should be deallocated
using delete
– destructor is a good place to deallocate memory

– implicitly called once object goes out of scope

– can also be called explicitly when object no longer needed

• Do not call delete again to de-allocate same memory
– usually happened unintentionally!

• Do not call delete on a pointer
– that is not initialized or is NULL,

– that is pointing to a variable not allocated using new

13 EECS 268 Programming II

Dynamic Allocation of Arrays

• Use “new” operator to allocate array dynamically

 int arraySize = 50;

 double *anArray = new double[arraySize];

• delete[] to release array memory
 delete[] anArray;

• The size of a dynamically allocated array can be
increased
 double *oldArray = anArray;

 anArray = new double[2*arraySize];

14 EECS 268 Programming II

Arrays and Pointers

• Array name is a pointer to array’s first element

• Pointer variable assigned to an array name can
be used just like an array
 int arr[100], *ip;

 ip = arr;

 for(i=0 ; i<100 ; i++)

 ip[i] = arr[i]+1; // ip and arr are aliased

• ip[i], arr[i], *(ip+i) all point to the same
location.

15 EECS 268 Programming II

Linked List?

• Options for implementing an ADT List

– Array has a fixed size

• Data must be shifted during insertions and deletions

– Linked list is able to grow in size as needed

• Does not require the shifting of items during insertions
and deletions

16 EECS 268 Programming II

Linked List ?

17

Figure 4-1 (a) A linked list of integers; (b) insertion; (c) deletion

EECS 268 Programming II

Pointer-Based Linked Lists

• A node in a linked list is usually a struct
struct Node

{ int item

 Node *next;

}; // end Node

• The head pointer points to the first node in a
linked list

18

Figure 4-7 A head pointer to a list

EECS 268 Programming II

Pointer-Based Linked Lists

• If head is NULL, the linked list is empty

• A node is dynamically allocated

Node *p; // pointer to node

p = new Node; // allocate node

19 EECS 268 Programming II

Displaying the Contents of a Linked List

• Reference a node member with the ->
operator
 p->item

• Visits each node in the linked list
– pointer variable cur keeps track of current node

 for (Node *cur = head; cur != NULL;

 cur = cur->next)

 cout << cur->item << endl;

20 EECS 268 Programming II

Displaying the Contents of a Linked List

21

Figure 4-9

The effect of the assignment cur = cur->next

EECS 268 Programming II

Deleting a Specified Node from a
Linked List

• Deleting an interior node
 prev->next = cur->next;

22

Figure 4-10 Deleting a node from a linked list

EECS 268 Programming II

Deleting the First Node from a
Linked List

23

Figure 4-11 Deleting the first node

• Deleting the first node
 head = head->next;

EECS 268 Programming II

Inserting a Node into a Specified
Position of a Linked List

• To insert a node between two nodes
newPtr->next = cur;

prev->next = newPtr;

24

Figure 4-12

Inserting a new node into a linked list

EECS 268 Programming II

Inserting a Node at the Beginning of a
Linked List

• To insert a node at the beginning of a linked
list

newPtr->next = head;

head = newPtr;

25

Figure 4-13

Inserting at the beginning of a linked list

EECS 268 Programming II

Inserting a Node into a Specified
Position of a Linked List

• Finding the point of insertion or deletion for a
sorted linked list of objects

 Node *prev, *cur;

 for (prev = NULL, cur = head;

 (cur != NULL)&&(newValue > cur->item);

 prev = cur, cur = cur->next);

26 EECS 268 Programming II

A Pointer-Based Implementation of
the ADT List

• Public methods
– isEmpty

– getLength

– insert

– remove

– retrieve

• Private method
– find

27

• Private data members
– head

– size

• Local variables to

methods

– cur

– prev

see C4-ListP.cpp EECS 268 Programming II

Constructors and Destructors

• Default constructor initializes size and head

• A destructor is required for de-allocating
dynamically allocated memory

– else, we will have a memory leak!

 List::~List()

 {

 while (!isEmpty())

 remove(1);

 } // end destructor

28 EECS 268 Programming II

Constructors and Destructors

• Copy constructor creates a deep copy
– copies size, head, and the linked list

– the copy of head points to the copied linked list

• In contrast, a shallow copy
– copies size and head

– the copy of head points to the original linked list

• If you omit a copy constructor, the compiler
generates one
– but it is only sufficient for implementations that use

statically allocated arrays

29 EECS 268 Programming II

Shallow Copy vs. Deep Copy

30

Figure 4-18 Copies of the linked list in Figure 4-17; (a) a shallow copy; (b) a deep copy

EECS 268 Programming II

Comparing Array-Based and Pointer-
Based Implementations

• Size

– increasing the size of a resizable array can waste
storage and time

– linked list grows and shrinks as necessary

• Storage requirements

– array-based implementation requires less memory
than a pointer-based one for each item in the ADT

31 EECS 268 Programming II

Comparing Array-Based and Pointer-
Based Implementations

• Retrieval

– the time to access the ith item

• Array-based: Constant (independent of i)

• Pointer-based: Depends on i

• Insertion and deletion

– Array-based: Requires shifting of data

– Pointer-based: Requires a traversal

32 EECS 268 Programming II

Passing a Linked List to a Method

• A method with access to a linked list’s head
pointer has access to the entire list

• Pass the head pointer to a method as a
reference argument

– Enables method to change value of the head
pointer itself (value argument would not)

33

Figure 4-22 A head pointer as a value argument

EECS 268 Programming II

Processing Linked Lists Recursively

• Recursive strategy to display a list
– write the first item in the list
– write the rest of the list (a smaller problem)

• Recursive strategies to display a list backward
– write the list minus its first item backward
– write the first item in the list

• Recursive view of a sorted linked list
– The linked list to which head points is a sorted list if

• head is NULL or
• head->next is NULL or
• head->item < head->next->item, and
 head->next points to a sorted linked list

34 see C4-ListP.cpp EECS 268 Programming II

Objects as Linked List Data

• Data in a node of a linked list can be an
instance of a class

 typedef ClassName ItemType;

 struct Node

 { ItemType item;

 Node *next;

 }; //end struct

 Node *head;

35 EECS 268 Programming II

Consts and References

• “Const” keyword is often used in C++

const int val = 100;

const int *ptr = &val;

const int * const ptr = &val;

void List::method() const;

• Reference variables

– used for passing arguments to methods by reference

– changes made within the method reflected in caller

36 see C4-RefVar.cpp EECS 268 Programming II

Variations: Circular Linked Lists

• Last node points to the first node

• Every node has a successor

• No node in a circular linked list contains NULL

37

Figure 4-25 A circular linked list

EECS 268 Programming II

Variations: Circular Linked Lists

• Access to last node requires a traversal
• Make external pointer point to last instead of first

node
– to access both first and last nodes without a traversal

38

Figure 4-26 A circular linked list with an external pointer to the last node

EECS 268 Programming II

Variations: Dummy Head Nodes

• Dummy head node

– always present, even when the linked list is empty

– insertion and deletion algorithms initialize prev to
point to the dummy head node, rather than to
NULL

• eliminates special case for head node

39

Figure 4-27 A dummy head node

EECS 268 Programming II

Variations: Doubly Linked Lists

• Each node points to both its predecessor and
its successor

• Circular doubly linked list with dummy head
node

– precede pointer of the dummy head node points
to the last node

– next pointer of the last node points to the dummy
head node

40 EECS 268 Programming II

Variations: Doubly Linked Lists

• To delete the node to which cur points
 (cur->precede)->next = cur->next;
 (cur->next)->precede = cur->precede;

• To insert a new node pointed to by newPtr

before the node pointed to by cur
 newPtr->next = cur;
 newPtr->precede = cur->precede;
 cur->precede = newPtr;
 newPtr->precede->next = newPtr;

41 EECS 268 Programming II

Variations: Doubly Linked Lists

42

Figure 4-29 (a) A circular doubly linked list with a dummy head node

 (b) An empty list with a dummy head node

EECS 268 Programming II

The C++ Standard Template Library

• The STL contains class templates for some
common ADTs, including the list class

• The STL provides support for predefined ADTs
through three basic items
– Containers

• Objects that hold other objects

– Algorithms
• That act on containers

– Iterators
• Provide a way to cycle through the contents of a container

43 EECS 268 Programming II

Summary

• The C++ new and delete operators enable
memory to be dynamically allocated and recycled

• Using static ‘arrays’ Vs dynamic ‘lists’

• A class that allocates memory dynamically needs
an explicit copy constructor and destructor

– compiler provides shallow copy constructor by default

• In a doubly linked list, each node points to both
its successor and predecessor

44 EECS 268 Programming II

