
Queues

• FIFO queue ADT

• Examples using queues
– reading character string in order

– recognize palindromes

• Queue implementations
– LL pointer based

– List ADT based

– array based

– tradeoffs

EECS 268 Programming II 1

The Abstract Data Type Queue

• Another common linear data structure similar to
the stack

• Queue is an ADT with following properties

– elements are kept in their order of arrival

– new items enter at the back, or rear, of the queue

– items leave from the front of the queue

• Thus queue has first-in, first-out (FIFO) property

– nicely models several real-world processes

• line to buy movie tickets, or queue jobs and print requests

2 EECS 268 Programming II

The Abstract Data Type Queue

• ADT queue operations

– Create an empty queue

– Destroy a queue

– Determine whether a queue is empty

– Add a new item to the queue

– Remove the item that was added earliest

– Retrieve the item that was added earliest

3 EECS 268 Programming II

The Abstract Data Type Queue

• Operation Contract for the ADT Queue

– isEmpty():boolean {query}

– enqueue(in newItem:QueueItemType)

 throw QueueException

– dequeue() throw QueueException

– dequeue(out queueFront:QueueItemType)

 throw QueueException

– getFront(out queueFront:QueueItemType) {query}

 throw QueueException

4 EECS 268 Programming II

The Abstract Data Type Queue

EECS 268 Programming II 5

Figure 7-2 Some queue operations

Example 1: Ordering Character String

• A queue can retain characters in the order in
which they are typed
aQueue.createQueue()

while (not end of line)

{ Read a new character ch

 aQueue.enqueue(ch)

} // end while

• Once the characters are in a queue, the
system can process them as necessary

6 EECS 268 Programming II

Example2: Recognizing Palindromes

• A palindrome is a string of characters that
reads the same backwards and forwards

– RADAR, MADAM, EYE, etc.

• Observations

– stack reverses the order of occurrences

– queue preserves the order of occurrences

• A palindrome stored in both stack and queue
will display a match when retrieved

7 EECS 268 Programming II

Example2: Recognizing Palindromes

• A nonrecursive
recognition algorithm for
palindromes
– traverse character string

from left to right

– insert each character into
both a queue and a stack

– compare the characters at
the front of the queue and
the top of the stack

8 see C7-palin.cpp EECS 268 Programming II

Implementations of the ADT Queue

• Linked list based queue implementation

– can maintain pointers to front and back of Queue

– circular linked list with one external reference also
possible

• Using ADT List class to implement queue

– possible less efficient, but simple

• An array-based queue implementation

– problem of rightward-drift

9 EECS 268 Programming II

Linked List Implementations

10

Figure 7-4 A pointer-based implementation of a queue: (a) a linear linked list with two

external pointers; (b) a circular linear linked list with one external pointer
EECS 268 Programming II

Operations in LL Implementation

11

Figure 7-7 Deleting an

item from a queue of

more than one item

Figure 7-6 Inserting an

item into an empty queue:

(a) before insertion;

(b) after insertion

Figure 7-5 Inserting

an item into a

nonempty queue

see C7-QueueP.cpp

List Based Queue Implementation

• Queue operations map well to ADT List
operations
– enqueue(item)  insert(getLength()+1, item)

– dequeue()  remove(1)

– getFront(qfront)  retrieve(1, qfront)

• We can built the queue ADT as a wrapper over
the List ADT

12 see C7-QueueL.cpp EECS 268 Programming II

An Array-Based Implementation

• Using arrays is slightly more complex
– naïve implementation causes rightward drift
– queue appears full even when array does not hold

MAX_QUEUE-1 elements

• Solutions to rightward drift
– always copy array elements to left – expensive
– maintain circular array – how to detect queue full/empty?

13 EECS 268 Programming II

Circular Array Implementation

• Problem:

– front == (back+1) is
true for both queue
full & empty

• Solution:

– use integer counter
to hold size of
queue

– update on each
enqueue/dequeue

14 EECS 268 Programming II

An Array-Based Implementation

• Initialize the queue,
front = 0, back = MAX_QUEUE – 1,
count = 0

• Inserting into a queue
back = (back+1) % MAX_QUEUE;

items[back] = newItem;

++count;

• Deleting from a queue
front = (front+1) % MAX_QUEUE;

--count;

15 see C7-QueueA.cpp EECS 268 Programming II

Array Implementation Variations

• Use a flag isFull
to distinguish
between the full and
empty conditions

• Declare
MAX_QUEUE + 1
locations for the
array items, but use
only MAX_QUEUE of
them for queue
items

16 EECS 268 Programming II

Comparing Implementations

• Static arrays Vs. dynamically allocated LLs

– enqueue operation cannot add item if array is full

– no size restriction with LL (unless memory full)

• LL Vs List bases array implementations

– LL-based implementation is more efficient

– ADT list approach reuses already implemented
class

• much simpler to write

• saves programming time

17 EECS 268 Programming II

A Summary of Position-Oriented ADTs

• Position-oriented ADTs

– List

– Stack

– Queue

• Stacks and queues

– Only the end positions can be accessed

• Lists

– All positions can be accessed

18 EECS 268 Programming II

A Summary of Position-Oriented ADTs

• Stacks and queues are very similar

– Operations of stacks and queues can be paired off

• createStack and createQueue

• Stack isEmpty and queue isEmpty

• push and enqueue

• pop and dequeue

• Stack getTop and queue getFront

19 EECS 268 Programming II

Summary

• ADT queue has first-in, first-out (FIFO) behavior

• Circular array eliminates the problem of
rightward drift in array-based implementation

• To distinguish between the queue-full and queue-
empty conditions in a circular array
– count the number of items in the queue

– use an isFull flag

– leave one array location empty

• LL and List ADT based implementations possible

20 EECS 268 Programming II

