Queues

* FIFO queue ADT

 Examples using queues

— reading character string in order

— recognize palindromes
 Queue implementations

— LL pointer based

— List ADT based

— array based

— tradeoffs

EECS 268 Programming |l

™ The Abstract Data Type Queue

 Another common linear data structure similar to
the stack
* Queue is an ADT with following properties
— elements are kept in their order of arrival
— new items enter at the back, or rear, of the queue
— items leave from the front of the queue
* Thus queue has first-in, first-out (FIFO) property

— nicely models several real-world processes

* line to buy movie tickets, or queue jobs and print requests

EECS 268 Programming |l

% The Abstract Data Type Queue

* ADT queue operations
— Create an empty queue
— Destroy a queue
— Determine whether a queue is empty
— Add a new item to the queue
— Remove the item that was added earliest
— Retrieve the item that was added earliest

W& The Abstract Data Type Queue

* Operation Contract for the ADT Queue

— isEmpty():boolean {query}

— engueue(in newltem:QueueltemType)
throw QueueException

— dequeue() throw QueueException

— dequeue(out queueFront:QueueltemType)
throw QueueException

— getFront(out queueFront:QueueltemType) {query}
throw QueueException

EECS 268 Programming |l

Operation

aQueue.createQueue ()
aQueue.engueue (5)
aQueue.enqueue (2)
aQueue.enqgqueue (7)
aQueue.getFront (queueFront)
aQueue.dequeue (queueFront)
aQueue .dequeue (queueFront)

Figure 7-2 Some gqueue operations

EECS 268 Programming |l

Queue after operation

¢ front

5

5 2

527

5 2 7 (queueFront is 5)
2 7 (queueFront is5)
/

(queueFront is 2)

xample 1: Ordering Character String

* A queue can retain characters in the order in
which they are typed

aQueue.createQueue ()

while (not end of line)

{ Read a new character ch
aQueue.enqueue (ch)

} // end while

* Once the characters are in a queue, the
system can process them as necessary

EECS 268 Programming |l

* A palindrome is a string of characters that
reads the same backwards and forwards

— RADAR, MADAM, EYE, etc.
e Observations

— stack reverses the order of occurrences
— gueue preserves the order of occurrences

* A palindrome stored in both stack and queue
will display a match when retrieved

* A nonrecursive
recognition algorithm for
palindromes

— traverse character string
from left to right

— insert each character into
both a queue and a stack

— compare the characters at
the front of the queue and
the top of the stack

EECS 268 Programming |l

String:

Queue:

Stack:

abchd

abchbd

P4

front back

<« {op

QOO N TOA

8

see C7-palin.cpp

* Linked list based queue implementation

— can maintain pointers to front and back of Queue

— circular linked list with one external reference also
possible

e Using ADT List class to implement queue

— possible less efficient, but simple

* An array-based queue implementation
— problem of rightward-drift

Linked List Implementations

(@) 2 —1—> 4 —1—> 1 — » 7 {///1

: :

frontPtr backPtr
(b) 2 —1—>» 4 —1—» 1 —r—>» 7 l

!

.

backPtr
Figure 7-4 A pointer-based implementation of a queue: (a) a linear linked list with two

external pointers; (b) a circular linear linked list with one external pointer
EECS 268 Programming |l

10

Operations in LL Implementation

Figure 7-5 Inserting

an item into a

’
Y

'y
Y

nonempty queue

frontPtr

Figure 7-6 Inserting an
item into an empty queue:
(a) before insertion;

(b) after insertion

Figure 7-7 Deleting an
item from a queue of

more than one item

(@ EZj

frontPtr

A

backPtr

tempPtr

backPtr

(b) E]

1. newPtr->next = NULL;
2. backPtr->next = newPtr;
3. backPtr = newPtr;

@

newPtr (points to new node)

frontPtr = newPtr;

backPtr = Ptr;
A frontPtr ac r new=Lri
|0|
newPtr backPtr newPtr
(D 1. tempPtr = frontPtr;
-» 4 . o I —r—» 7 2. frontPtr = frontPtr-s>next;
3. tempPtr->next = NULL;
4. delete tempPtr;
frontPtr backPtr

see C7-QueueP.cpp

ist Based Queue Implementation

* Queue operations map well to ADT List
operations

— enqueue(item) =2 insert(getLength()+1, item)
— dequeue() 2 remove(1)
— getFront(gfront) = retrieve(1, gfront)

* We can built the queue ADT as a wrapper over
the List ADT

Front of queue —+ +— Back of queue

2417

Position in list — 1 29394 see C7-QueueL.cpp

EE 268 Pro

An Array-Based Implementation

* Using arrays is slightly more complex
— naive implementation causes rightward drift

— queue appears full even when array does not hold
MAX_ QUEUE-1 elements

e Solutions to rightward drift
— always copy array elements to left — expensive
— maintain circular array — how to detect queue full/empty?

items

(a) 0 3 2 4 1 7
front back 0 1 2 3 MAX QUEUE — 1 -<«— Array indexes
items
(b) | 47 49 6 | 10| 2
front back 0 1 47 48 49

L MAX QUEUE -1

EECS 268 Programming |l

Circular Array Implementation

. Queue with single item —— Delete item—queue becomes empt
* Problem: 9 ; Pty

MAX QUEUE -1 MAX QUEUE -1

— front == (back+1) is
true for both queue “

2 5

-
fU” & empty 4T 3 front 4T 3
* Solution: rront
— U Se i ntege I CO U nte I Queue with single empty slot ———» Insert 9—queue becomes full

to hold size of euErE QTR T
queue o L $ 5\’ 6&2\1

5 2 3 /5 5 2 3/2
— update on each b 9 }/
enqueue/dequeue

EECS 268 Programming Il 14

™ An Array-Based Implementation

* |nitialize the queue,
front =0, back=MAX QUEUE - 1,
count =0

* Inserting into a queue
back = (back+l) % MAX QUEUE;
items [back] = newltem;
++count;

* Deleting from a queue
front = (front+l) % MAX QUEUE;
——count;

EECS 268 Programming I SCC C7-QUCUCA.Cpp

15

NS
hS) ;/
A

Useaflag isFull
to distinguish S
between the full and |

empty conditions J—

Declare 6/@\1
MAX QUEUE + 1 oSy
locations for the 5 b

array items, but use ’ f
only MAX QUEUE of ™ bax
them for queue

items

(a)

EECS 268 Programming Il

Array Implementation Variations

MAX QUEUE

16

= Comparing Implementations

e Static arrays Vs. dynamically allocated LLs
— enqueue operation cannot add item if array is full
— no size restriction with LL (unless memory full)

e LL Vs List bases array implementations
— LL-based implementation is more efficient

— ADT list approach reuses already implemented
class
* much simpler to write
* saves programming time

EECS 268 Programming |l

A Summary of Position-Oriented ADTs

* Position-oriented ADTs
— List
— Stack
— Queue

e Stacks and queues

— Only the end positions can be accessed
* Lists
— All positions can be accessed

EECS 268 Programming |l

Summary of Position-Oriented ADTs

e Stacks and queues are very similar

— Operations of stacks and queues can be paired off
* createStack and createQueue
e Stack isEmpty and queue isEmpty
* push and enqueue
* pop and dequeue
» Stack getTop and queue getFront

EECS 268 Programming |l 19

Summary

ADT queue has first-in, first-out (FIFO) behavior

Circular array eliminates the problem of
rightward drift in array-based implementation

To distinguish between the queue-full and queue-
empty conditions in a circular array

— count the number of items in the queue

— use an isFull flag

— |leave one array location empty

LL and List ADT based implementations possible

