
Advanced C++ Topics

• Inheritance

• Virtual methods and late binding

• Friend classes and methods

• Class templates

• Overloaded operators

• Iterators

EECS 268 Programming II 1

Inheritance Revisited

• Inheritance is useful to
– explicitly represent relationships among program

components

– reuse as much design and implementation effort as
possible

– avoid parallel implementations that are error prone since
they are hard to keep synchronized

• Class hierarchies represent shared and distinct
relationships between classes
– derived (sub) class inherits base (super) class properties

• all member data and functions except constructors and
destructors

2

Inheritance – Basic Concepts

• Superclass or base class

– a class from which another class is derived

• Subclass, derived class, or descendant class

– a class that inherits all members of another class

– can add new members to those it inherits

– can redefine an inherited method of its base class,
if the two methods have the same parameter
declarations

EECS 268 Programming II 3

Inheritance – Basic Concepts

• The base class’s public methods can be called by
– An instance of the base class

– An instance of the derived class

– The derived class’s methods

• A derived class inherits all of the base class’s
members (except constructors and destructor)
– An instance of a derived class has all the behaviors of

its base class (can call the base class’s public methods)

– A derived class cannot access the base class’s private
data and methods directly by name

EECS 268 Programming II 4

Inheritance Revisited

EECS 268 Programming II 5

Inheritance – Syntax

• class derivedClass: access-modifier baseClass

• access modifier describes access semantics of
base class components inherited by derived class

• Public methods can be used by any code
– client, class member functions, derived classes

• Private members
– class member functions and friends

• Protected
– class members, friends, derived classes

EECS 268 Programming II 6

Kinds of Inheritance

• Apply most restrictive access based on base
access type and inheritance access modifier

• Public inheritance
– Public/Protected Public/Protected derived

members

• Protected inheritance
– Public/Protected Protected derived members

• Private Inheritance
– Public/Protected Private derived members

• Private base class members remain private under
all inheritance types

EECS 268 Programming II 7

Inheritance Hierarchy – Example

8

Figure 8-1 Inheritance: Relationships among timepieces

Inheritance – Example

• Sphere serves as a base class for Ball

– some routines inherited, some new, and some are
redefined (e.g. display Statistics())

9

Multiple Inheritance

• Multiple inheritance

– a derived class can have more than one base class

– we will not study this kind of inheritance

EECS 268 Programming II 10

Inheritance Revisited

• In general, a class’s data members should be
private

11

Is-a Relationships

• Public inheritance should imply an is-a relationship
• Object type compatibility

– you can use an instance of a derived class anywhere you
can use an instance of the base class (but not the other
way around)

• Example
– A ball is a sphere
– Given the following function declaration:

void displayDiameter(Sphere thing);

 The following statements are valid:
Ball myBall(5.0, “Volleyball”);
displayDiameter(myBall);

EECS 268 Programming II 12
see C8-Sphere.cpp, C8-Ball.cpp

Sphere/Ball Example

• Ball class (derived from Sphere)

– both constructors call base class constructors to
handle private radius data

– getName() is a new method

– setName() gives access to Ball data

– resetBall() uses both Sphere and Ball access
routines as the data is private in both classes

• Ball could access name directly

EECS 268 Programming II 13

Sphere/Ball Example – 2

• Ball class
– displayStatistics() redefines the name in the

derived class as a local method
• to display Ball’s unique data element “theName”

• uses full class::member scope resolution syntax to call
Sphere’s displayStatistics()

– instance of Ball has two data members
• theName and theRadius (inherited)

• since Sphere::theRadius is defined private (rather than
protected or public) it can only be accessed through the
public (get/set)Radius() methods

EECS 268 Programming II 14

Has-a Relationships

• If the relationship between two classes is not is-a,
do not use public inheritance

• Has-a relationship (also called containment)
– a class has an object as a data member
– cannot be implemented using inheritance

• Example: A has-a relationship between a pen and
a ball

class Pen {
 …
 private:
 Ball point; };

EECS 268 Programming II 15

As-a Relationships

• Uses private inheritance
– Example: Implement a stack as a list

 class Stack: private List
• stack can manipulate the items on the stack by using List’s

methods

• the underlying list is hidden from the clients and
descendants of the stack

• Private inheritance is useful when
– a class needs access to the protected members of

another class, or

– if methods in a class need to be redefined

EECS 268 Programming II 16

As-a relationship –
Private Inheritance

• All public, protected and private elements of
the base class are private in the derived class.

• Client code reference to a public base class
routine through the derived class instance is
illegal.

• Derived class completely wraps base class
elements.

• Derived class is implemented using or is
implemented in terms of the base class.

EECS 268 Programming II 17

see C8-StackL.cpp, C8-List.cpp

Stack as-a List Example

• A stack is not a type a list since it has unique
semantics

• Stack semantics can be implemented in terms on
List semantics

• Private inheritance strongly conceals any list
related semantics from the clients
– only exposes push()/pop()
– cannot access insert()/remove()

• Contrast with the Stack has-a List implementation
from Chapter 4
– just as good; both work

EECS 268 Programming II 18

Inheritance & Class Relationships

• Public inheritance
– extend or specialize an existing class

– most common

– is-a relationship between base/derived classes

• Protected inheritance
– not very useful; not often used

• Private inheritance
– to implement one class in terms of another

– as-a relationship

EECS 268 Programming II 19

Class Relationships

• IS-A: derived class is special kind of base class

– public inheritance used to implement in C++

• AS-A: derived class implemented in terms of
base class

– private inheritance can be used in C++

• HAS-A: object A includes instance of object B
as part of its implementation

– encapsulation is just as good as inheritance

EECS 268 Programming II 20

Virtual Functions

• Derived class sometimes need to modify or completely
replace actions of a base class method
– derived class is said to override the inherited method

• Base class must give permission for redefinition
– by declaring the method as virtual

• Redefinition is permitted but not required
• Redefined methods must have exactly the same

signature as the inherited base class methods
• Derived functions do not need to use the virtual

keyword
• Friend and constructor functions cannot be virtual, but

destructors can be

EECS 268 Programming II 21

Virtual Functions – 2

• Base class Animal gives
permission to override
breathe() and move()

• Derived class Fish over-
rides both, but denies
permission to further
override breathe()

• WalkingCatFish over-
rides move() but uses
inherited breathe()

class Animal {

public:

 ...

 virtual void breathe(); // uses a nose

 virtual void move(); // uses feet

 ...

};

class Fish: public Animal {

public:

 ...

 void breathe(); // uses gills

 virtual void move(); // uses fins

 ...

}

class WalkingCatFish: public Fish {

 void move(); // uses fins as feet

}

 EECS 268 Programming II 22

Function Overriding Example

EECS 268 Programming II 23

class baseClass{

public:

 virtual void print(){

 cout << “BaseClass”;

 }

};

class firstClass :

 public baseClass{

public:

 void print(){

 cout << “firstClass”;

 }

};

class secondClass :

 public baseClass{

};

class thirdClass :

 public baseClass{

public:

 void print(){

 cout << “thirdClass”;

 }

};

class fourthClass :

 public thirdClass{

};
see C8-staticBinding.cpp

Name Binding Time

• Binding time can be compile-time or run-time
– controls what methods are called in some cases

• see C8-staticBinding2.cpp

• Direct access using b and d instance variable
obviously compile time

• But what if they point to a different type
object??
– bp1 is legal (but bogus)

– dp2 illegal type conversion

EECS 268 Programming II 24

Virtual Methods and Late Binding

• Methods declared as virtual are tracked at runtime by a
virtual method table (VMT)
– methods not declared as virtual can be redefined

– methods declared as virtual are overridden

• Use of non-virtual methods is determined at compile-
time and references to the function are compiled-in
– lower overhead reference method

• Use of virtual methods is determined at runtime by
consulting the VMT of the object accessed
– pointer to calling object (this) given to every method call

– higher overhead, but avoids some undesirable behaviors

EECS 268 Programming II 25
see C8-bindingTime.cpp

Virtual Methods and Late Binding

• Late, or dynamic, binding
– the appropriate version of a polymorphic method

is decided at execution time

– a polymorphic method has multiple meanings and
overrides a method of the superclass

– the outcome of an operation depends upon the
objects on which it acts

• Defining class methods as virtual preserves
flexibility at the cost of slightly higher VMT
overhead.

EECS 268 Programming II 26

Virtual Methods and Late Binding

• In general, define a class’s methods virtual, unless
you do not want derived class to override them.

• Any class that contains a virtual method is called
a polymorphic class
– and is extensible, i.e., can add capabilities to a derived

class without access to the ancestor’s source code

• Constructors cannot be virtual
• Destructors can and should be virtual
• A virtual method’s return type cannot be

overridden

EECS 268 Programming II 27

Abstract Base Class

• Classes may declare a virtual function prototype
without providing an implementation for it
– used as a placeholder for an API element, which

derived classes are obligated to implement

• Method functions declared but not defined in a
class are pure virtual

 virtual type func_name(param_list) = 0;
• A base class containing a pure virtual function is

called an abstract base class
• No instances of an abstract class can exist since at

least one method lacks an implementation.

EECS 268 Programming II 28

Friend Methods/Classes

• Perfect adherence to object encapsulation is not
always convenient or clear
– access to private, and protected, members of a class by

collaborating classes can simplify implementation
– friend definition is a mechanism for granting other

exceptions

• Functions and classes can be friends of a class
• Friend functions can access private and protected
• Friend functions of a class are not class members
• Friends of base class are not friends of derived

classes

EECS 268 Programming II 29

Friend Methods/Classes

• Friend functions permit input and output routines
to have access to private and protected class data

– general input/output routines can be friends of
objects they are creating and initializing

• Useful when one class (A) contains an instance of
another class (B) because A HAS-A B as part of its
implementation

– remember implementing stacks and queues using
different mappings onto the List ADT operations

EECS 268 Programming II 30

Friends – Example

• ‘write’ can access private variables in ‘Base’

– cannot access private variables in Derived

EECS 268 Programming II 31

class Base{

public:

 friend void write(Base& b);

private:

 double bvalue;

};

void write(Base& b){

 cout << b.bvalue << endl;

}

class Derieved:public Base{

public:

private:

 double dval;

};

int main(){

 Base b; Derived d;

 write(b); write(d);

}

Friend Methods/Classes

• A class List can be a friend of the class ListNode

– List can access ListNode’s private and protected
members)

class ListNode

{

private:

… // define constructors and data

 // members item and *next

 friend class List;

};

32 EECS 268 Programming II

ADTs List and Sorted List Revisited

• Section 8.4 in Carrano provides a good
discussion of applying these new concepts to
familiar examples

• abstract Base Class (BasicADT)

• pure Virtual Functions

• virtual Functions

• Three level class hierarchy

EECS 268 Programming II 33

BasicADT

SortedList

List

Class Templates

• Way to describe commonality
among different solution
components.

– Situation: same basic structure
with different data components

– lists, stacks, queues, trees, etc.

– same data structures, different
data

• Parameterized class definition

– data types are the parameters

template <typename T>

class NewClass

{

 public:

 NewClass();

 NewClass(T initialData);

 void setData(T newData);

 T getData();

 private:

 T theData;

};

 EECS 268 Programming II 34

Class Templates – 2

• Declarations and methods
must specify the type
parameters in creating an
instance

int main() {

 NewClass<int> first;

 NewClass<double> second(4.8);

 first.setData(5);

 cout << second.getData() << endl;

}

EECS 268 Programming II 35

template <typename T>

void NewClass<T>::setData(T newData){

 theData = newData;

}

template <typename T>

T NewClass<T>::getData() {

 return theData;

}

template <typename T>

NewClass<T>::NewClass()

{ }

template <typename T>

NewClass<T>::NewClass

 (T initialData): theData(initialData)

{ }
see C8-templareEx1.cpp

Class Templates – 3

• Precede class definition template with

template <typename T>

• Precede each method template with

template <typename T>

EECS 268 Programming II 36
see C8-ListT.cpp

C8-ListT.h/.cpp

• Data Type parameter <T> takes the place of
 typedef <listitemtypespec> ListItemType;

• Default constructor for the list node cannot
initialize the data element
– abstract definition of <T> has no information about

what the type will be (it can be any type)
– but copy constructor can

• Note the inclusion of the implementation source
file at the end of the header file.

• Templat List class supports client code creating
two standard lists holding double and char data

EECS 268 Programming II 37
see C8-ListTClient.cpp

Class Templates – 4

• Abstract nature of the class description can lead
to problems with apparently “standard”
operations

• Everything the class does must be valid for every
possible type specified for T

• For example, specified type should overload the
“<<” operator to support output

• Class template specification must thoroughly
document all such operations and other
assumptions made by the class implementation
– must be satisfied by all classes provided as T

EECS 268 Programming II 38

Class Templates – 5

• Compiler must know the class specified for T
before it can compile the template instance

• Class template header and source files are
defined as normal
– but the implementation file is not compiled separately

ahead of time
– implementation file #included at the end of the

header file

• All client code using the template thus includes it,
making the definition available to compiler when
it compiles instances for specific T

EECS 268 Programming II 39

Overloaded Operators

• Overloaded operator has more than one meaning

• Overload common operators for classes to enable
a particular operator to work correctly on
instances of a class

• Example: a list
– Define the equality operator for a list

 virtual bool operator == (const List& rhs) const

– Overload the assignment operator to get a deep copy
of a list

 virtual List& operator = (const List& rhs);

EECS 268 Programming II 40

Overloading Operators -- Guidelines

• Can overload any operator except: ., .*, ::, ?, :, sizeof

• Cannot define new operators by overloading symbols
that are not already operators in C++

• Cannot change the standard precedence of a C++
operator or the number of its operands

• At least one operand of an overloaded operator must
be an instance of a class

• Cannot change the number of arguments for an
overloaded method

• A typical class should overload the assignment,
equality, and relational operators (= == != < <= > >=)

EECS 268 Programming II 41

Iterators

 Operation Description

* Return the item that the iterator currently references

++ Move the iterator to the next item in the list

-- Move the iterator to the previous item in the list

== Compare two iterators for equality

!= Compare two iterators for inequality

42

• An iterator is an object that traverses a
collection of like objects

• Common iterator operations

Iterators

• A header file for the class ListIterator
// List and ListIterator are friend classes of ListNode

#include “ListNode.h”

class ListIterator

{

public:

 ListIterator(const List *aList, ListNode *nodePtr);

const ListItemType & operator*();

ListIterator operator++();

bool operator==(const ListIterator& rhs) const;

bool operator!=(const ListIterator& rhs) const;

friend class List;

private:

 const List *container //ADT associated with iterator

 ListNode *cur; //current location in collection

};

43 EECS 268 Programming II

Summary

• Inheritance

• Virtual methods and late binding

• Friend classes and methods

• Class templates

• Overloaded operators

• Iterators

• All these are ways to express desired semantics in
C++ to specify algorithmic solution to a problem.

EECS 268 Programming II 44

