Advanced C++ Topics

* Inheritance

* Virtual methods and late binding
* Friend classes and methods

* Class templates

* Overloaded operators

* |terators

EECS 268 Programming II

Inheritance Revisited

 |nheritance is useful to

— explicitly represent relationships among program
components

— reuse as much design and implementation effort as
possible

— avoid parallel implementations that are error prone since
they are hard to keep synchronized
e Class hierarchies represent shared and distinct
relationships between classes

— derived (sub) class inherits base (super) class properties

* all member data and functions except constructors and
destructors

\9]

Inheritance — Basic Concepts

e Superclass or base class

— a class from which another class is derived

e Subclass, derived class, or descendant class

— a class that inherits all members of another class
— can add new members to those it inherits

— can redefine an inherited method of its base class,
if the two methods have the same parameter
declarations

EECS 268 Programming II

Inheritance — Basic Concepts

* The base class’s public methods can be called by
— An instance of the base class
— An instance of the derived class
— The derived class’s methods

* A derived class inherits all of the base class’s
members (except constructors and destructor)

— An instance of a derived class has all the behaviors of
its base class (can call the base class’s public methods)

— A derived class cannot access the base class’s private
data and methods directly by name

EECS 268 Programming II 4

Inheritance Revisited

The class Sphere The class Ball

displayStatistics()
A

displayStatistics()
A

mySphere.displayStatistics () ;
myBall.displayStatistics() ;

EECS 268 Programming II

Inheritance — Syntax

class derivedClass: access-modifier baseClass

access modifier describes access semantics of
base class components inherited by derived class

Public methods can be used by any code
— client, class member functions, derived classes

Private members
— class member functions and friends

Protected
— class members, friends, derived classes

EECS 268 Programming II 6

Kinds of Inheritance

Apply most restrictive access based on base
access type and inheritance access modifier

Public inheritance

— Public/Protected = Public/Protected derived
members

Protected inheritance

— Public/Protected = Protected derived members
Private Inheritance

— Public/Protected = Private derived members

Private base class members remain private under
all inheritance types

EECS 268 Programming Il

Timepiece

AnalogTimepiece DigitalTimepiece

]
DigitalWristwatch ‘ DigitalClock \
]

AnalogAlarmClock ||| GrandfatherClock PocketWatch | | AnalogWristwatch

DigitialAlarmClock

CuckooClock

Figure 8-1 Inheritance: Relationships among timepieces

Inheritance — Example

* Sphere serves as a base class for Ball

— some routines inherited, some new, and some are

redefined (e.g. display Statistics())

Sphere

theRadius

Ball

Sphere()

~Sphere

setRadius()
getRadius()
getDiameter()
getCrcumference()
getArea()
getVolume()
getDisplayStatistics()

theName

Ball()
~Ball()
setName()
getName()
resetBall()

displayStatistics()

> — New

]» <«— Redefined

Multiple Inheritance

 Multiple inheritance
— a derived class can have more than one base class
— we will not study this kind of inheritance

DigitalClock Radio
‘ DigitalRadio

EECS 268 Programming II 10

Inheritance Revisited

* |[n general, a class’s data members should be
private

Base class Derived class

I Public section

Client has access >
I The derived class
| has access to both
——————————————— the public members and
Protected section the protected members
of the base class

Client has no access —»

Client has no access —»

Is-a Relationships

* Public inheritance should imply an is-a relationship
* Object type compatibility

— you can use an instance of a derived class anywhere you

can use an instance of the base class (but not the other
way around)

 Example
— A ball is a sphere
— Given the following function declaration:
void displayDiameter(Sphere thing);

The following statements are valid:
Ball myBall(5.0, “Volleyball”);
displayDiameter(myBall);

EECS 268 Prog, S€€ C8-Sphere.cpp, C8-Ball.cpp .

Sphere/Ball Example

» Ball class (derived from Sphere)

— both constructors call base class constructors to
nandle private radius data

— getName() is a new method
— setName() gives access to Ball data

— resetBall() uses both Sphere and Ball access
routines as the data is private in both classes

* Ball could access name directly

EECS 268 Programming II

Sphere/Ball Example — 2

e Ball class

— displayStatistics() redefines the name in the
derived class as a local method

* to display Ball’s unique data element “theName”

* uses full class::member scope resolution syntax to call
Sphere’s displayStatistics()

— instance of Ball has two data members
* theName and theRadius (inherited)

* since Sphere::theRadius is defined private (rather than

protected or public) it can only be accessed through the
public (get/set)Radius() methods

EECS 268 Programming II 14

Has-a Relationships

* |f the relationship between two classes is not is-a,
do not use public inheritance

* Has-a relationship (also called containment)
— a class has an object as a data member
— cannot be implemented using inheritance

 Example: A has-a relationship between a pen and
a ball

class Pen {

private:
Ball point; };

EECS 268 Programming II 15

As-a Relationships

e Uses private inheritance
— Example: Implement a stack as a list

class Stack: private List

* stack can manipulate the items on the stack by using List’s
methods

* the underlying list is hidden from the clients and
descendants of the stack

 Private inheritance is useful when

— a class needs access to the protected members of
another class, or

— if methods in a class need to be redefined

EECS 268 Programming II 16

As-a relationship —
Private Inheritance

* All public, protected and private elements of
the base class are private in the derived class.

* Client code reference to a public base class

routine through the derived class instance is
illegal.

* Derived class completely wraps base class
elements.

* Derived class is implemented using or is
implemented in terms of the base class.

FECS 268 Prograr S€€ C8-StackL.cpp, C8-List.cpp .

Stack as-a List Example

e A stackis not a type a list since it has unique
semantics

e Stack semantics can be implemented in terms on
List semantics

* Private inheritance strongly conceals any list
related semantics from the clients
— only exposes push()/pop()
— cannot access insert()/remove()

* Contrast with the Stack has-a List implementation
from Chapter 4

— just as good; both work

EECS 268 Programming II 18

= nheritance & Class Relationships

 Publicinheritance

— extend or specialize an existing class
— most common
— is-a relationship between base/derived classes

* Protected inheritance
— not very useful; not often used

* Private inheritance
— to implement one class in terms of another
— as-a relationship

EECS 268 Programming II 19

Class Relationships

* |S-A: derived class is special kind of base class

— public inheritance used to implement in C++

e AS-A: derived class implemented in terms of
base class

— private inheritance can be used in C++

 HAS-A: object A includes instance of object B
as part of its implementation

— encapsulation is just as good as inheritance

EECS 268 Programming Il

Virtual Functions

* Derived class sometimes need to modify or completely
replace actions of a base class method

— derived class is said to override the inherited method

e Base class must give permission for redefinition
— by declaring the method as virtual

* Redefinition is permitted but not required

* Redefined methods must have exactly the same
signature as the inherited base class methods

e Derived functions do not need to use the virtual
keyword

* Friend and constructor functions cannot be virtual, but
destructors can be

* Base class Animal gives
permission to override
breathe() and move()

Virtual Functions — 2

class Animal {
public:

virtual void breathe(); // uses a nose
virtual void move(); // uses feet

* Derived class Fish over-)
rides bOth; bUt denies class Fish: public Animal {
permission to further public:

override breathe()

* WalkingCatFish over-
rides move() but uses

inherited breathe()

void breathe(); // uses qills
virtual void move(); // uses fins

—

class WalkingCatFish: public Fish {
void move(); // uses fins as feet

}

EECS 268 Programming II

\®]
\9]

% Function Overriding Example

class baseClass{ class secondClass :
public: public baseClass{
virtual void print(){ }
cout << “BaseClass’; class thirdClass :
} public baseClass{
¥ public:

void print(){

class firstClass : cout << “thirdClass”™:

public baseClass{)
public: .

void print
COUFT(<<Q‘f‘irstC|ass”- class fourthClass :

} public thirdClass{

. 3
}’ EECS 268 Programming I[I FSCC C8—StatICB1ndlng.Cpp 23

Name Binding Time

Binding time can be compile-time or run-time
— controls what methods are called in some cases

see C8-staticBinding2.cpp

Direct access using b and d instance variable
obviously compile time

But what if they point to a different type
object??

— bp1l is legal (but bogus)

— dp2 illegal type conversion

EECS 268 Programming Il

irtual Methods and Late Binding

* Methods declared as virtual are tracked at runtime by a
virtual method table (VMT)

— methods not declared as virtual can be redefined
— methods declared as virtual are overridden
* Use of non-virtual methods is determined at compile-
time and references to the function are compiled-in
— lower overhead reference method
e Use of virtual methods is determined at runtime by
consulting the VMT of the object accessed
— pointer to calling object (this) given to every method call
— higher overhead, but avoids some undesirable behaviors

see C8-bindingTime.cpp

EECS 268 Programming II 25

irtual Methods and Late Binding

e Late, or dynamic, binding

— the appropriate version of a polymorphic method
is decided at execution time

— a polymorphic method has multiple meanings and
overrides a method of the superclass

— the outcome of an operation depends upon the
objects on which it acts

* Defining class methods as virtual preserves
flexibility at the cost of slightly higher VMT
overhead.

EECS 268 Programming II

irtual Methods and Late Binding

In general, define a class’s methods virtual, unless
you do not want derived class to override them.

Any class that contains a virtual method is called
a polymorphic class

— and is extensible, i.e., can add capabilities to a derived
class without access to the ancestor’s source code

Constructors cannot be virtual
Destructors can and should be virtual

A virtual method’s return type cannot be
overridden

EECS 268 Programming II 27

Abstract Base Class

* Classes may declare a virtual function prototype
without providing an implementation for it

— used as a placeholder for an APl element, which
derived classes are obligated to implement

e Method functions declared but not defined in a
class are pure virtual

virtual type func_name(param_list) = 0;

* A base class containing a pure virtual function is
called an abstract base class

e No instances of an abstract class can exist since at
least one method lacks an implementation.

Friend Methods/Classes

* Perfect adherence to object encapsulation is not
always convenient or clear

— access to private, and protected, members of a class by
collaborating classes can simplify implementation

— friend definition is a mechanism for granting other
exceptions

* Functions and classes can be friends of a class
* Friend functions can access private and protected
* Friend functions of a class are not class members

* Friends of base class are not friends of derived
classes

EECS 268 Programming II 29

Friend Methods/Classes

* Friend functions permit input and output routines
to have access to private and protected class data

— general input/output routines can be friends of
objects they are creating and initializing
e Useful when one class (A) contains an instance of
another class (B) because A HAS-A B as part of its
implementation

— remember implementing stacks and queues using
different mappings onto the List ADT operations

EECS 268 Programming II 30

Friends — Example

e ‘write’ can access private variables in ‘Base’

— cannot access private variables in Derived

class Derieved:public Base{

class Base{ .
public: pu_bllc:
friend void write(Base& b); Private:
private: double dval;
double bvalue; oo
% Int main(){
void write(Base& b){ Base b; Derived d;

cout << b.bvalue << endl; write(b); write(d);

}

EECS 268 Programming II 31

Friend Methods/Classes

e Aclass I.i st can be a friend of the class I.i stNode

— List canaccess ListNode’s private and protected
members)

class ListNode

{

private:

.. // define constructors and data
// members item and *next
friend class List;

b

EECS 268 Programming II 32

BN\DTs List and Sorted List Revisited

* Section 8.4 in Carrano provides a good
discussion of applying these new concepts to
familiar examples

* abstract Base Class (BasicADT) BasicADT
e pure Virtual Functions

e virtual Functions [ist

* Three level class hierarchy

SortedList

EECS 268 Programming II

Class Templates

e Way to describe commonality template <typename T>
among different solution E'ass NewClass
components.

public:
— Situation: same basic structure NewClass();

with different data components NewClass(T initialData);
— lists, stacks, queues, trees, etc.

— same data structures, different void setData(T newData);
data T getData();
 Parameterized class definition o
private:
— data types are the parameters T theData:
}

EECS 268 Programming II 34

Class Templates — 2

Int main() {
* Declarations and methods NewClass<int> first;
must specify the type NewClass<double> second(4.8);
parameters in creating an |
. first.setData(5);
Instance cout << second.getData() << end];
}

template <typename T>
void NewClass<T>::setData(T newData){
theData = newData;

template <typename T>
NewClass<T>::NewClass()

{1} }
template <typename T> template <typename T>
NewClass<T>::NewClass T NewClass<T>::getData() {

(T initialData): theData(initialData) return theData;
{1}

EECS 268 Erogramming 1 SEC C8—templareEX1 .Cpp 35

Class Templates — 3

* Precede class definition template with

template <typename T>

* Precede each method template with

template <typename T>

see C8-ListT.cpp

EECS 268 Programming II 36

C8-ListT.h/.cpp

Data Type parameter <T> takes the place of
typedef <listitemtypespec> ListitemType;
Default constructor for the list node cannot

initialize the data element

— abstract definition of <T> has no information about
what the type will be (it can be any type)

— but copy constructor can

Note the inclusion of the implementation source
file at the end of the header file.

Templat List class supports client code creating
two standard lists holding double and char data

see C8-ListTClient.cpp

Class Templates — 4

Abstract nature of the class description can lead
to problems with apparently “standard”
operations

Everything the class does must be valid for every
possible type specified for T

For example, specified type should overload the
“<<” operator to support output

Class template specification must thoroughly
document all such operations and other
assumptions made by the class implementation

— must be satisfied by all classes provided as T

Class Templates — 5

 Compiler must know the class specified for T
before it can compile the template instance

* Class template header and source files are
defined as normal

— but the implementation file is not compiled separately
ahead of time

— implementation file #included at the end of the
header file

* All client code using the template thus includes it,
making the definition available to compiler when
it compiles instances for specific T

Overloaded Operators

Overloaded operator has more than one meaning

Overload common operators for classes to enable
a particular operator to work correctly on
instances of a class

Example: a list
— Define the equality operator for a list

virtual bool operator == (const List& rhs) const

— Overload the assignment operator to get a deep copy
of a list

virtual List& operator = (const List& rhs);

EECS 268 Programming II 40

™’ Overloading Operators -- Guidelines

 Can overload any operator except: ., .%, ::, ?, :, sizeof

* Cannot define new operators by overloading symbols
that are not already operators in C++

 Cannot change the standard precedence of a C++
operator or the number of its operands

* At least one operand of an overloaded operator must
be an instance of a class

* Cannot change the number of arguments for an
overloaded method

e Atypical class should overload the assignment,

equality, and relational operators (= == 1= < <= > >=)

EECS 268 Programming II

41

lterators

* An iterator is an object that traverses a
collection of like objects

* Common iterator operations

Operation | Description
* Return the item that the iterator currently references
++ Move the iterator to the next item in the list

Move the iterator to the previous item in the list

Compare two iterators for equality

Compare two iterators for inequality

42

lterators

e A header filefortheclassListIterator

// List and ListIterator are friend classes of ListNode

#include “ListNode.h”

class ListIterator

{

public:
ListIterator(const List *alist,
const ListItemType & operator*();

ListIterator operator++();
bool operator==(const ListlIterator& rhs) const;

bool operator!=(const ListIterator& rhs) const;
friend class List;

private:
const List *container //ADT associated with iterator

ListNode *cur; //current location in collection

ListNode *nodePtr);

b

EECS 268 Programming II

Summary

Inheritance

Virtual methods and late binding
Friend classes and methods
Class templates

Overloaded operators

Iterators

All these are ways to express desired semantics in
C++ to specify algorithmic solution to a problem.

EECS 268 Programming Il 44

