
Algorithm Efficiency & Sorting 

• Algorithm efficiency 

• Big-O notation 

• Searching algorithms 

• Sorting algorithms 
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Overview 

• Writing programs to solve problem consists of a large  
number of decisions  
– how to represent aspects of the problem for solution 

– which of several approaches to a given solution 
component to use 

• If several algorithms are available for solving a given 
problem, the developer must choose among them 

• If several ADTs can be used to represent a given set of 
problem data 
– which ADT should be used? 

– how will ADT choice affect algorithm choice? 
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Overview – 2 

• If a given ADT (i.e. stack or queue) is attractive as 
part of a solution 

• How will the ADT implemention affect the 
program's: 
– correctness and performance? 

• Several goals must be balanced by a developer in 
producing a solution to a problem 
– correctness, clarity, and efficient use of computer 

resources to produce the best performance 

• How is solution performance best measured? 
– time and space 
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Overview – 3 

• The order of importance is, generally, 
– correctness 

– efficiency 

– clarity 

• Clarity of expression is qualitative and somewhat 
dependent on perception by the reader 
– developer salary costs dominate many software projects 

– time efficiency of understanding code written by others 
can thus have a significant monetary implication 

•  Focus of this chapter is execution efficiency 
– mostly, run-time (some times, memory space) 
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Measuring Algorithmic Efficiency 

• Analysis of algorithms  
– provides tools for contrasting the efficiency of different 

methods of solution 

• Comparison of algorithms 
– should focus on significant differences in efficiency 

– should not consider reductions in computing costs due to 
clever coding tricks 

• Difficult  to compare programs instead of algorithms 
– how are the algorithms coded? 

– what computer should you use? 

– what data should the programs use? 
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Analyzing Algorithmic Cost 
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Analyzing Algorithmic Cost – 2 
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Analyzing Algorithmic Cost – 3 

• Do not attempt to accumulate a precise 
prediction for program execution time, 
because 
– far too many complicating factors: compiler 

instructions output, variation with specific data 
sets, target hardware speed 

• Provide an approximation, an order of 
magnitude estimate, that permits fair 
comparison of one algorithm's behavior 
against that of another 

8 EECS 268 Programming II 



Analyzing Algorithmic Cost – 4 

• Various behavior bounds are of interest 
– best case, average case, worst case 

• Worst-case analysis 
– A determination of the maximum amount of time that 

an algorithm requires to solve problems of size n 

• Average-case analysis 
– A determination of the average amount of time that 

an algorithm requires to solve problems of size n 

• Best-case analysis 
– A determination of the minimum amount of time that 

an algorithm requires to solve problems of size n 
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Analyzing Algorithmic Cost – 5 

• Complexity measures can be calculated in terms of 
– T(n): time complexity and S(n): space complexity 

• Basic model of computation used  
– sequential computer (one statement at a time) 

– all data require same amount of storage in memory 

– each datum in memory can be accessed in constant time 

– each basic operation can be executed in constant time 

• Note that all of these assumptions are incorrect! 
– good for this purpose 

• Calculations we want are order of magnitude 
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Example – Linked List Traversal 

• Assumptions 
     C1 = cost of assign. 
     C2 = cost of compare 
     C3 = cost of write 
• Consider the number of operations for n items 
 T(n) = (n+1)C1 + (n+1)C2 + nC3 

         = (C1+C2+C3)n + (C1+C2) = K1n + K2 

• Says, algorithm is of linear complexity 
– work done grows linearly with n but also involves 

constants 
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Node *cur = head;       // assignment op 

    while (cur != NULL) // comparisons op 

    cout << cur→item  

            << endl;           // write op 

    cur→next;                // assignment op 

} 
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Example – Sequential Search 

• Number of comparisons 

      TB(n) = 1 

      Tw(n) = n 

      TA(n) = (n+1)/2 

• In general, what 
developers worry about 
the most is that this is 
O(n) algorithm 
– more precise analysis is 

nice but rarely influences 
algorithmic decision  
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 Seq_Search(A: array, key: integer); 

     i = 1; 

        while i ≤ n and A[i] ≠ key do 

               i = i + 1 

        endwhile; 

        if i ≤ n 

               then return(i) 

               else return(0) 

        endif; 

 end Sequential_Search; 
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Bounding Functions 
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Asymptotic Upper Bound 
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Asymptotic Upper Bound – 2 
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Algorithm Growth Rates 

• An algorithm’s time requirements can be 
measured as a function of the problem size 

– Number of nodes in a linked list 

– Size of an array 

– Number of items in a stack 

– Number of disks in the Towers of Hanoi problem 
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Algorithm Growth Rates – 2 
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•Algorithm A requires time proportional to n
2
 

•Algorithm B requires time proportional to n 



Algorithm Growth Rates – 3 

• An algorithm’s growth rate enables comparison of one 
algorithm with another 

• Example 
– if, algorithm A requires time proportional to n2, and 

algorithm B requires time proportional to n 

– algorithm B is faster than algorithm A  
– n2 and n are growth-rate functions 
– Algorithm A is O(n2) - order n2 
– Algorithm B is O(n) - order n 

• Growth-rate function f(n) 
– mathematical function used to specify an algorithm’s 

order in terms of the size of the problem 
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Order-of-Magnitude Analysis and Big 
O Notation 
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Figure 9-3a  A comparison of growth-rate functions: (a) in tabular form 
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Order-of-Magnitude Analysis and Big 
O Notation 
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Figure 9-3b  A comparison of growth-rate functions: (b) in graphical form 
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Order-of-Magnitude Analysis and Big 
O Notation 

• Order of growth of some common functions 

– O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n2) < 
O(n3) < O(2n) < O(3n) < O(n!) < O(nn) 

• Properties of growth-rate functions 

– O(n3 + 3n) is O(n3): ignore low-order terms 

– O(5 f(n)) = O(f(n)): ignore multiplicative constant 
in the high-order term 

– O(f(n)) + O(g(n)) = O(f(n) + g(n)) 
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Keeping Your Perspective 

• Only significant differences in efficiency are 
interesting 

• Frequency of operations 

– when choosing an ADT’s implementation, consider 
how frequently particular ADT operations occur in 
a given application 

– however, some seldom-used but critical 
operations must be efficient 
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Keeping Your Perspective 

• If the problem size is always small, you can 
probably ignore an algorithm’s efficiency 
– order-of-magnitude analysis focuses on large 

problems 

• Weigh the trade-offs between an algorithm’s 
time requirements and its memory 
requirements 

• Compare algorithms for both style and 
efficiency 
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Sequential Search 

• Sequential search 
– look at each item in the data collection in turn 
– stop when the desired item is found, or the end of the 

data is reached 
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int search(const int a[ ], int number_used, int target) { 

       int index = 0; bool found = false; 

       while ((!found) && (index < number_used)) { 

              if (target == a[index]) 

                     found = true; 

              else 

                      Index++; 

        } 

       if (found)   return index; 

       else    return  -1; 

} 
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Efficiency of Sequential Search 

• Worst case: O(n) 

– key value not present, we search the entire list to 
prove failure 

• Average case: O(n) 

– all positions for the key being equally likely 

• Best case: O(1) 

– key value happens to be first 
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The Efficiency of Searching Algorithms 

• Binary search of a sorted array 
– Strategy 

• Repeatedly divide the array in half 

• Determine which half could contain the item, and 
discard the other half 

– Efficiency 
• Worst case: O(log2n) 

• For large arrays, the binary search has an enormous 
advantage over a sequential search 

– At most 20 comparisons to search an array of one million 
items 
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Sorting Algorithms and Their Efficiency 

• Sorting 
– A process that organizes a collection of data into 

either ascending or descending order 

– The sort key is the data item that we consider when 
sorting a data collection 

• Sorting algorithm types 
– comparison based 

• bubble sort, insertion sort, quick sort, etc. 

– address calculation 
• radix sort 
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Sorting Algorithms and Their Efficiency 

• Categories of sorting algorithms 

– An internal sort  

• Requires that the collection of data fit entirely in the 
computer’s main memory 

– An external sort 

• The collection of data will not fit in the computer’s 
main memory all at once, but must reside in secondary 
storage 
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for index=0 to size-2 { 

    select min/max element from among A[index], …, A[size-1]; 

    swap(A[index], min); 

} 

Selection Sort 

• Strategy 
– Place the largest (or smallest) item in its correct place 
– Place the next largest (or next smallest) item in its correct 

place, and so on 

• Algorithm 
 
 
 
• Analysis  

– worst case: O(n2), average case:  O(n2) 
– does not depend on the initial arrangement of the data 
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Selection Sort 

30 

Figure 9-4  A selection sort of an array of five integers 
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Bubble Sort 

• Strategy 

– compare adjacent elements and exchange them if 
they are out of order 

• moves the largest (or smallest) elements to the end of 
the array 

– repeat this process  

• eventually sorts the array into ascending (or 
descending) order 

• Analysis: worst case: O(n2), best case:  O(n) 
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Bubble Sort – algorithm 

for i = 1 to size - 1   do 

     for index = 1 to size - i do 

           if A[index] < A[index-1] 

                swap(A[index], A[index-1]); 

     endfor; 

endfor; 
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Bubble Sort 
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Figure 9-5 

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2 
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Insertion Sort 

• Strategy 
– Partition array in two regions: sorted and unsorted 

• initially, entire array is in unsorted region 

• take each item from the unsorted region and insert it into its 
correct position in the sorted region 

• each pass shrinks unsorted region by 1 and grows sorted 
region by 1 

• Analysis 
– Worst case: O(n2) 

• Appropriate for small arrays due to its simplicity 

• Prohibitively inefficient for large arrays 
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Insertion Sort 
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Figure 9-7  An insertion sort of an array of five integers. 
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Mergesort 

• A recursive sorting algorithm 

• Performance is independent of the initial 
order of the array items 

• Strategy 

– divide an array into halves 

– sort each half 

– merge the sorted halves into one sorted array 

– divide-and-conquer approach 
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Mergesort – Algorithm  

mergeSort(A,first,last) { 

 if (first < last) { 

  mid = (first + last)/2; 

  mergeSort(A, first, mid); 

  mergeSort(A, mid+1, last); 

  merge(A, first, mid, last) 

 } 

}  
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Mergesort 
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Mergesort 
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Mergesort – Properties 

• Needs a temporary array into which to copy 
elements during merging 
– doubles space requirement 

• Mergesort is stable 
– items with equal key values appear in the same 

order in the output array as in the input 

• Advantage 
– mergesort is an extremely fast algorithm 

• Analysis: worst / average case: O(n * log2n) 
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Quicksort 

• A recursive divide-and-conquer algorithm 
– given a linear data structure A with n records 

– divide A into sub-structures S1 and S2 

– sort S1 and S2 recursively 

• Algorithm 
– Base case: if |S|==1, S is already sorted 

– Recursive case: 
• divide A around a pivot value P into S1 and S2 , such that  

all elements of S1<=P and all elements of S2>=P 

• recursively sort S1 and S2 in place 
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Quicksort 

• Partition() 
–  (a) scans array, (b) chooses a pivot, (c) divides A 

around pivot, (d) returns pivot index 
– Invariant: items in S1 are all less than pivot, and items 

in S2 are all greater than or equal to pivot 

• Quicksort() 
– partitions A, sorts S1 and S2 recursively 
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Quicksort – Pivot Partitioning 

• Pivot selection and  array partition are 
fundamental work of algorithm 

• Pivot selection 

– perfect value: median of A[ ] 

• sort required to determine median (oops!) 

• approximation: If |A| > N, N==3 or N==5, use median of N 

– Heuristic approaches used instead 

• Choose A[first] OR A[last] OR A[mid] (mid = (first+last)/2) OR 
Random element 

• heuristics  equivalent if contents of A[ ] randomly arranged 
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Quicksort – Pivot Partitioning Example 

• A= [5,8,3,7,4,2,1,6], first =0, last =7 

• A[first]: pivot = 5, A[last]: pivot = 6,  

• A[mid]: mid =(0+7)/2=3, pivot = 7 

• A[random()]: any key might be chosen 

• A[medianof3]: median(A[first], A[mid], A[last]) is  
median(5,7,6) = 6 
• a sort of a fixed number of items is only O(1) 

• Good pivot selection 
• computed in O(1) time and partitions A into roughly 

equal parts S1 and S2 
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Quicksort – Pivot Partitioning 
• Middle element is pivot 

• lastS1: index of last 
element of S1 partition 

• firstUnknown: first 
element needing 
classification 
– if <p, then add to first 

partition by incrementing 
last S1 and swapping 

– incrementing firstUnknown 
expands partitioned sets 
either way 

• Partitioning is an O(n) 
operation over A[ ] 

int partition(A,first,last) { 

    middle = (first+last)/2; 

    pivot = A[middle]; 

    swap(A[middle],A[first]); 

    lastS1 = first; 

    firstUnknown = first+1; 

    while( firstUnknown <= last ) {  

         if (A[firstUnknown] < pivot) {  

            lastS1++;            

            swap(A[firstUnknown],A[lastS1]); 

         } 

         firstUnknown++; 

     } 

     swap(A[first],A[lastS1]); 

     pivotIndex = lastS1; 

     return(pivotIndex); 

} 
45 EECS 268 Programming II 



Quicksort – Pivot Partitioning 
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5 8 3 7 4 2 8 6 

7 8 3 5 4 2 8 6 7 3 5 4 8 2 8 6 

7 8 3 5 4 2 8 6 7 3 5 4 2 8 8 6 

7 3 8 5 4 2 8 6 7 3 5 4 2 8 8 6 

7 3 5 8 4 2 8 6 7 3 5 4 2 6 8 8 

6 3 5 4 2 7 8 8 

first last 

mid 

lastS1 

firstUnknown 

pivotIndex = 5 

S1 = A[0..4] 

S2 = A[6..7] EECS 268 Programming II 



Quicksort – Analysis  

• Best case 
– perfect partition at each level, log2n levels 
– O(n log n) total 

• Average case 
– roughly equal partition 
– O(n log n) 

•  Worst case 
– S1 or S2 always empty 
– When the array is already sorted and the smallest 

item is chosen as the pivot 
– O(n2 ), n levels, rare as long is input is in random order 
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Quicksort – Analysis 

• Partitioning and recursive call overhead is 
such that for |A| < 10 or so it is faster to 
simply use insertion sort 

– precise tipping point will vary with architecture 

– but, Quicksort is usually extremely fast in practice 

• Not stable like Mergesort, but sorts in place 

• Even if the worst case occurs, quicksort’s 
performance is acceptable for moderately 
large arrays 
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Radix Sort 

• Radix sort is a special kind of distribution sort 
that can efficiently sort data items using integer 
or other t element keys (atat-1...a0)m in a given 
radix (base) m 
– character string keys work as well; total order of all 

characters required 

• Strategy 
– Treats each data element as a character string 

– Repeatedly organizes the data into groups according 
to the ith character in each element 

49 EECS 268 Programming II 



Radix Sort 

• Basic idea 
– each key consists of t places, each holding one of m 

possible values 
– use m buckets and iterate the basic algorithm t times, each 

time using a different element of the key for sorting 
– iterate from least significant to most significant key 

position 
– 12345 – Five digit key, iterated over 100, 101, 102, 103, 104 

using  buckets 0-9 each time 
– FRED – Four character keys using capitol letters, iterated 

from right to left using 26 buckets A-Z each time  

• Analysis: Radix sort is O(n) 
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Radix Sort 
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Figure 9-21  A radix sort of eight integers 



A Comparison of Sorting Algorithms 
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Figure 9-22  Approximate growth rates of time required for eight sorting algorithms 
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Heapsort 
   



Summary 

• Order-of-magnitude analysis and Big O 
notation measure an algorithm’s time 
requirement as a function of the problem size 
by using a growth-rate function 

• To compare the efficiency of algorithms 

– examine growth-rate functions when problems  
are large 

– consider only significant differences in growth-rate 
functions 
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Summary 

• Worst-case and average-case analyses 

– worst-case analysis considers the maximum 
amount of work an algorithm will require on a 
problem of a given size 

– average-case analysis considers the expected 
amount of work that an algorithm will require on 
a problem of a given size 
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Summary 

• Worst case complexity of sorting algorithms 
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Imput in 
Sorted Order 

Input in Reverse 
Sorted Order 

Bubble Sort O(n) O(n2) 

Insertion Sort O(n) O(n2) 

Selection Sort O(n2) O(n2) 

Merge Sort O(n log n) O(n log n) 

Quick Sort O(n2) O(n2) 

Radix Sort O(n) O(n) 
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Summary 

• Complexity of sorting algorithms for random 
data, most common case 
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TB(n) TW(n) TA(n) 

Bubble  O(n) O(n2) O(n2) 

Insertion O(n) O(n2) O(n2) 

Selection O(n2) O(n2) O(n2) 

Merge O(n log n) O(n log n) O(n log n) 

Quiksort O(n log n) O(n2) O(n log n) 

Radix O(n) O(n) O(n) 
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Summary 

• Stability of sorting algorithms 

–  stable sort preserves the input order of data 
items with identical keys 

– Thus, if input items x and y have identical keys, 
and x precedes y in the input data set, x will 
precede y in the output sorted data set 

– bubble, insertion, selection, merge, and radix are 
stable sorting algorithms 
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