
Algorithm Efficiency & Sorting

• Algorithm efficiency

• Big-O notation

• Searching algorithms

• Sorting algorithms

EECS 268 Programming II 1

Overview

• Writing programs to solve problem consists of a large
number of decisions
– how to represent aspects of the problem for solution

– which of several approaches to a given solution
component to use

• If several algorithms are available for solving a given
problem, the developer must choose among them

• If several ADTs can be used to represent a given set of
problem data
– which ADT should be used?

– how will ADT choice affect algorithm choice?

2 EECS 268 Programming II

Overview – 2

• If a given ADT (i.e. stack or queue) is attractive as
part of a solution

• How will the ADT implemention affect the
program's:
– correctness and performance?

• Several goals must be balanced by a developer in
producing a solution to a problem
– correctness, clarity, and efficient use of computer

resources to produce the best performance

• How is solution performance best measured?
– time and space

3 EECS 268 Programming II

Overview – 3

• The order of importance is, generally,
– correctness

– efficiency

– clarity

• Clarity of expression is qualitative and somewhat
dependent on perception by the reader
– developer salary costs dominate many software projects

– time efficiency of understanding code written by others
can thus have a significant monetary implication

• Focus of this chapter is execution efficiency
– mostly, run-time (some times, memory space)

4 EECS 268 Programming II

Measuring Algorithmic Efficiency

• Analysis of algorithms
– provides tools for contrasting the efficiency of different

methods of solution

• Comparison of algorithms
– should focus on significant differences in efficiency

– should not consider reductions in computing costs due to
clever coding tricks

• Difficult to compare programs instead of algorithms
– how are the algorithms coded?

– what computer should you use?

– what data should the programs use?

5 EECS 268 Programming II

Analyzing Algorithmic Cost

6 EECS 268 Programming II

Analyzing Algorithmic Cost – 2

7 EECS 268 Programming II

Analyzing Algorithmic Cost – 3

• Do not attempt to accumulate a precise
prediction for program execution time,
because
– far too many complicating factors: compiler

instructions output, variation with specific data
sets, target hardware speed

• Provide an approximation, an order of
magnitude estimate, that permits fair
comparison of one algorithm's behavior
against that of another

8 EECS 268 Programming II

Analyzing Algorithmic Cost – 4

• Various behavior bounds are of interest
– best case, average case, worst case

• Worst-case analysis
– A determination of the maximum amount of time that

an algorithm requires to solve problems of size n

• Average-case analysis
– A determination of the average amount of time that

an algorithm requires to solve problems of size n

• Best-case analysis
– A determination of the minimum amount of time that

an algorithm requires to solve problems of size n

9 EECS 268 Programming II

Analyzing Algorithmic Cost – 5

• Complexity measures can be calculated in terms of
– T(n): time complexity and S(n): space complexity

• Basic model of computation used
– sequential computer (one statement at a time)

– all data require same amount of storage in memory

– each datum in memory can be accessed in constant time

– each basic operation can be executed in constant time

• Note that all of these assumptions are incorrect!
– good for this purpose

• Calculations we want are order of magnitude

10 EECS 268 Programming II

Example – Linked List Traversal

• Assumptions
 C1 = cost of assign.
 C2 = cost of compare
 C3 = cost of write
• Consider the number of operations for n items
 T(n) = (n+1)C1 + (n+1)C2 + nC3

 = (C1+C2+C3)n + (C1+C2) = K1n + K2

• Says, algorithm is of linear complexity
– work done grows linearly with n but also involves

constants

11

Node *cur = head; // assignment op

 while (cur != NULL) // comparisons op

 cout << cur→item

 << endl; // write op

 cur→next; // assignment op

}

EECS 268 Programming II

Example – Sequential Search

• Number of comparisons

 TB(n) = 1

 Tw(n) = n

 TA(n) = (n+1)/2

• In general, what
developers worry about
the most is that this is
O(n) algorithm
– more precise analysis is

nice but rarely influences
algorithmic decision

12

 Seq_Search(A: array, key: integer);

 i = 1;

 while i ≤ n and A[i] ≠ key do

 i = i + 1

 endwhile;

 if i ≤ n

 then return(i)

 else return(0)

 endif;

 end Sequential_Search;

EECS 268 Programming II

Bounding Functions

13 EECS 268 Programming II

Asymptotic Upper Bound

14 EECS 268 Programming II

Asymptotic Upper Bound – 2

15 EECS 268 Programming II

Algorithm Growth Rates

• An algorithm’s time requirements can be
measured as a function of the problem size

– Number of nodes in a linked list

– Size of an array

– Number of items in a stack

– Number of disks in the Towers of Hanoi problem

16 EECS 268 Programming II

Algorithm Growth Rates – 2

17

•Algorithm A requires time proportional to n
2

•Algorithm B requires time proportional to n

Algorithm Growth Rates – 3

• An algorithm’s growth rate enables comparison of one
algorithm with another

• Example
– if, algorithm A requires time proportional to n2, and

algorithm B requires time proportional to n

– algorithm B is faster than algorithm A
– n2 and n are growth-rate functions
– Algorithm A is O(n2) - order n2
– Algorithm B is O(n) - order n

• Growth-rate function f(n)
– mathematical function used to specify an algorithm’s

order in terms of the size of the problem

18 EECS 268 Programming II

Order-of-Magnitude Analysis and Big
O Notation

19

Figure 9-3a A comparison of growth-rate functions: (a) in tabular form

EECS 268 Programming II

Order-of-Magnitude Analysis and Big
O Notation

20

Figure 9-3b A comparison of growth-rate functions: (b) in graphical form

EECS 268 Programming II

Order-of-Magnitude Analysis and Big
O Notation

• Order of growth of some common functions

– O(C) < O(log(n)) < O(n) < O(n * log(n)) < O(n2) <
O(n3) < O(2n) < O(3n) < O(n!) < O(nn)

• Properties of growth-rate functions

– O(n3 + 3n) is O(n3): ignore low-order terms

– O(5 f(n)) = O(f(n)): ignore multiplicative constant
in the high-order term

– O(f(n)) + O(g(n)) = O(f(n) + g(n))

21 EECS 268 Programming II

Keeping Your Perspective

• Only significant differences in efficiency are
interesting

• Frequency of operations

– when choosing an ADT’s implementation, consider
how frequently particular ADT operations occur in
a given application

– however, some seldom-used but critical
operations must be efficient

22 EECS 268 Programming II

Keeping Your Perspective

• If the problem size is always small, you can
probably ignore an algorithm’s efficiency
– order-of-magnitude analysis focuses on large

problems

• Weigh the trade-offs between an algorithm’s
time requirements and its memory
requirements

• Compare algorithms for both style and
efficiency

23 EECS 268 Programming II

Sequential Search

• Sequential search
– look at each item in the data collection in turn
– stop when the desired item is found, or the end of the

data is reached

24

int search(const int a[], int number_used, int target) {

 int index = 0; bool found = false;

 while ((!found) && (index < number_used)) {

 if (target == a[index])

 found = true;

 else

 Index++;

 }

 if (found) return index;

 else return -1;

}
EECS 268 Programming II

Efficiency of Sequential Search

• Worst case: O(n)

– key value not present, we search the entire list to
prove failure

• Average case: O(n)

– all positions for the key being equally likely

• Best case: O(1)

– key value happens to be first

25 EECS 268 Programming II

The Efficiency of Searching Algorithms

• Binary search of a sorted array
– Strategy

• Repeatedly divide the array in half

• Determine which half could contain the item, and
discard the other half

– Efficiency
• Worst case: O(log2n)

• For large arrays, the binary search has an enormous
advantage over a sequential search

– At most 20 comparisons to search an array of one million
items

26 EECS 268 Programming II

Sorting Algorithms and Their Efficiency

• Sorting
– A process that organizes a collection of data into

either ascending or descending order

– The sort key is the data item that we consider when
sorting a data collection

• Sorting algorithm types
– comparison based

• bubble sort, insertion sort, quick sort, etc.

– address calculation
• radix sort

27 EECS 268 Programming II

Sorting Algorithms and Their Efficiency

• Categories of sorting algorithms

– An internal sort

• Requires that the collection of data fit entirely in the
computer’s main memory

– An external sort

• The collection of data will not fit in the computer’s
main memory all at once, but must reside in secondary
storage

28 EECS 268 Programming II

for index=0 to size-2 {

 select min/max element from among A[index], …, A[size-1];

 swap(A[index], min);

}

Selection Sort

• Strategy
– Place the largest (or smallest) item in its correct place
– Place the next largest (or next smallest) item in its correct

place, and so on

• Algorithm

• Analysis

– worst case: O(n2), average case: O(n2)
– does not depend on the initial arrangement of the data

29 EECS 268 Programming II

Selection Sort

30

Figure 9-4 A selection sort of an array of five integers

EECS 268 Programming II

Bubble Sort

• Strategy

– compare adjacent elements and exchange them if
they are out of order

• moves the largest (or smallest) elements to the end of
the array

– repeat this process

• eventually sorts the array into ascending (or
descending) order

• Analysis: worst case: O(n2), best case: O(n)

31 EECS 268 Programming II

Bubble Sort – algorithm

for i = 1 to size - 1 do

 for index = 1 to size - i do

 if A[index] < A[index-1]

 swap(A[index], A[index-1]);

 endfor;

endfor;

32 EECS 268 Programming II

Bubble Sort

33

Figure 9-5

The first two passes of a bubble sort of an array of five integers: (a) pass 1; (b) pass 2

EECS 268 Programming II

Insertion Sort

• Strategy
– Partition array in two regions: sorted and unsorted

• initially, entire array is in unsorted region

• take each item from the unsorted region and insert it into its
correct position in the sorted region

• each pass shrinks unsorted region by 1 and grows sorted
region by 1

• Analysis
– Worst case: O(n2)

• Appropriate for small arrays due to its simplicity

• Prohibitively inefficient for large arrays

34 EECS 268 Programming II

Insertion Sort

35

Figure 9-7 An insertion sort of an array of five integers.

EECS 268 Programming II

Mergesort

• A recursive sorting algorithm

• Performance is independent of the initial
order of the array items

• Strategy

– divide an array into halves

– sort each half

– merge the sorted halves into one sorted array

– divide-and-conquer approach

36 EECS 268 Programming II

Mergesort – Algorithm

mergeSort(A,first,last) {

 if (first < last) {

 mid = (first + last)/2;

 mergeSort(A, first, mid);

 mergeSort(A, mid+1, last);

 merge(A, first, mid, last)

 }

}

37 EECS 268 Programming II

Mergesort

38 EECS 268 Programming II

Mergesort

39 EECS 268 Programming II

Mergesort – Properties

• Needs a temporary array into which to copy
elements during merging
– doubles space requirement

• Mergesort is stable
– items with equal key values appear in the same

order in the output array as in the input

• Advantage
– mergesort is an extremely fast algorithm

• Analysis: worst / average case: O(n * log2n)

40 EECS 268 Programming II

Quicksort

• A recursive divide-and-conquer algorithm
– given a linear data structure A with n records

– divide A into sub-structures S1 and S2

– sort S1 and S2 recursively

• Algorithm
– Base case: if |S|==1, S is already sorted

– Recursive case:
• divide A around a pivot value P into S1 and S2 , such that

all elements of S1<=P and all elements of S2>=P

• recursively sort S1 and S2 in place

41 EECS 268 Programming II

Quicksort

• Partition()
– (a) scans array, (b) chooses a pivot, (c) divides A

around pivot, (d) returns pivot index
– Invariant: items in S1 are all less than pivot, and items

in S2 are all greater than or equal to pivot

• Quicksort()
– partitions A, sorts S1 and S2 recursively

42 EECS 268 Programming II

Quicksort – Pivot Partitioning

• Pivot selection and array partition are
fundamental work of algorithm

• Pivot selection

– perfect value: median of A[]

• sort required to determine median (oops!)

• approximation: If |A| > N, N==3 or N==5, use median of N

– Heuristic approaches used instead

• Choose A[first] OR A[last] OR A[mid] (mid = (first+last)/2) OR
Random element

• heuristics equivalent if contents of A[] randomly arranged

43 EECS 268 Programming II

Quicksort – Pivot Partitioning Example

• A= [5,8,3,7,4,2,1,6], first =0, last =7

• A[first]: pivot = 5, A[last]: pivot = 6,

• A[mid]: mid =(0+7)/2=3, pivot = 7

• A[random()]: any key might be chosen

• A[medianof3]: median(A[first], A[mid], A[last]) is
median(5,7,6) = 6
• a sort of a fixed number of items is only O(1)

• Good pivot selection
• computed in O(1) time and partitions A into roughly

equal parts S1 and S2

44 EECS 268 Programming II

Quicksort – Pivot Partitioning
• Middle element is pivot

• lastS1: index of last
element of S1 partition

• firstUnknown: first
element needing
classification
– if <p, then add to first

partition by incrementing
last S1 and swapping

– incrementing firstUnknown
expands partitioned sets
either way

• Partitioning is an O(n)
operation over A[]

int partition(A,first,last) {

 middle = (first+last)/2;

 pivot = A[middle];

 swap(A[middle],A[first]);

 lastS1 = first;

 firstUnknown = first+1;

 while(firstUnknown <= last) {

 if (A[firstUnknown] < pivot) {

 lastS1++;

 swap(A[firstUnknown],A[lastS1]);

 }

 firstUnknown++;

 }

 swap(A[first],A[lastS1]);

 pivotIndex = lastS1;

 return(pivotIndex);

}
45 EECS 268 Programming II

Quicksort – Pivot Partitioning

46

5 8 3 7 4 2 8 6

7 8 3 5 4 2 8 6 7 3 5 4 8 2 8 6

7 8 3 5 4 2 8 6 7 3 5 4 2 8 8 6

7 3 8 5 4 2 8 6 7 3 5 4 2 8 8 6

7 3 5 8 4 2 8 6 7 3 5 4 2 6 8 8

6 3 5 4 2 7 8 8

first last

mid

lastS1

firstUnknown

pivotIndex = 5

S1 = A[0..4]

S2 = A[6..7] EECS 268 Programming II

Quicksort – Analysis

• Best case
– perfect partition at each level, log2n levels
– O(n log n) total

• Average case
– roughly equal partition
– O(n log n)

• Worst case
– S1 or S2 always empty
– When the array is already sorted and the smallest

item is chosen as the pivot
– O(n2), n levels, rare as long is input is in random order

47 EECS 268 Programming II

Quicksort – Analysis

• Partitioning and recursive call overhead is
such that for |A| < 10 or so it is faster to
simply use insertion sort

– precise tipping point will vary with architecture

– but, Quicksort is usually extremely fast in practice

• Not stable like Mergesort, but sorts in place

• Even if the worst case occurs, quicksort’s
performance is acceptable for moderately
large arrays

48 EECS 268 Programming II

Radix Sort

• Radix sort is a special kind of distribution sort
that can efficiently sort data items using integer
or other t element keys (atat-1...a0)m in a given
radix (base) m
– character string keys work as well; total order of all

characters required

• Strategy
– Treats each data element as a character string

– Repeatedly organizes the data into groups according
to the ith character in each element

49 EECS 268 Programming II

Radix Sort

• Basic idea
– each key consists of t places, each holding one of m

possible values
– use m buckets and iterate the basic algorithm t times, each

time using a different element of the key for sorting
– iterate from least significant to most significant key

position
– 12345 – Five digit key, iterated over 100, 101, 102, 103, 104

using buckets 0-9 each time
– FRED – Four character keys using capitol letters, iterated

from right to left using 26 buckets A-Z each time

• Analysis: Radix sort is O(n)

50 EECS 268 Programming II

Radix Sort

51

Figure 9-21 A radix sort of eight integers

A Comparison of Sorting Algorithms

52

Figure 9-22 Approximate growth rates of time required for eight sorting algorithms

EECS 268 Programming II

Heapsort

Summary

• Order-of-magnitude analysis and Big O
notation measure an algorithm’s time
requirement as a function of the problem size
by using a growth-rate function

• To compare the efficiency of algorithms

– examine growth-rate functions when problems
are large

– consider only significant differences in growth-rate
functions

53 EECS 268 Programming II

Summary

• Worst-case and average-case analyses

– worst-case analysis considers the maximum
amount of work an algorithm will require on a
problem of a given size

– average-case analysis considers the expected
amount of work that an algorithm will require on
a problem of a given size

54 EECS 268 Programming II

Summary

• Worst case complexity of sorting algorithms

55

Imput in
Sorted Order

Input in Reverse
Sorted Order

Bubble Sort O(n) O(n2)

Insertion Sort O(n) O(n2)

Selection Sort O(n2) O(n2)

Merge Sort O(n log n) O(n log n)

Quick Sort O(n2) O(n2)

Radix Sort O(n) O(n)

EECS 268 Programming II

Summary

• Complexity of sorting algorithms for random
data, most common case

56

TB(n) TW(n) TA(n)

Bubble O(n) O(n2) O(n2)

Insertion O(n) O(n2) O(n2)

Selection O(n2) O(n2) O(n2)

Merge O(n log n) O(n log n) O(n log n)

Quiksort O(n log n) O(n2) O(n log n)

Radix O(n) O(n) O(n)

EECS 268 Programming II

Summary

• Stability of sorting algorithms

– stable sort preserves the input order of data
items with identical keys

– Thus, if input items x and y have identical keys,
and x precedes y in the input data set, x will
precede y in the output sorted data set

– bubble, insertion, selection, merge, and radix are
stable sorting algorithms

57 EECS 268 Programming II

