
EECS 644 HW 3: due 10/02/2025 (by email)

1. Determine whether the following are *energy signals*, *power signals*, or *neither* (show work). When applicable, what is the energy or power of the signal?

a)
$$x(n) = \sum_{k=-\infty}^{\infty} \delta(n-2k)$$

- b) $x(n) = a^n u(n) + b^n u(n)$ for |a| < 1 and |b| < 1, with a and b real-valued
- 2. Determine the cross-correlation $r_{xy}(\ell)$ between $x(n) = a^n u(n)$ and the finite-length sequence $y(n) = \{1, b, b^2\}$ for 0 < |a| < 1. *Note:* y(n) is finite in time.
- 3. Using x(n) and y(n) from Prob. 3, determine the cross-correlation $r_{wy}(\ell)$ between w(n) = x(-n) and y(n).
- 4. A desired signal band-limited between $-\Omega_D$ and Ω_D is corrupted by noise that is constant over all frequencies (*i.e.* white noise). The frequency response (in absolute scale) of a hypothetical anti-aliasing filter is shown below. After filtering, what is the minimum sampling rate F_S such that <u>no additional</u> noise is aliased into the signal passband and why? (Be concise!)

5. Given the signal

$$x(n) = \sum_{k=-\infty}^{\infty} \left[\delta(n-4k) + 7\delta(n-4k-1) - 7\delta(n-4k-2) - \delta(n-4k-3) \right]$$

how many bits are required to achieve an SQNR \geq 28 dB if $X_m = 7$? What is the "optimal" value of X_m if the signal were Gaussian with the same signal power and how many bits does it require to achieve SQNR \geq 28 dB?

6. For the polyphase decomposed components below, determine the original filter h(n).

$$e_0(n) = \{a,b,c\}$$

$$e_1(n) = \{d, e, f\}$$

$$e_2(n) = \{g, h, i\}$$

$$e_3(n) = \{j, k, \ell\}$$