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Abstract— Recent work has examined optimization of 

frequency modulated (FM) waveforms to improve matched filter 

range sidelobes, while maintaining continuous phase attributes 

and spectral containment amenable to high power amplification. 

Through autocorrelation sidelobe minimization of each pulse 

independently, the range characteristics of a traditional nonlinear 

FM (NLFM) can be further enhanced. However, the resulting 

waveforms no longer exhibit the monotonic instantaneous 

frequency features of NLFM. 

Here, random phase perturbations are incorporated into each 

NLFM prior to optimization – resulting in marginally diverse 

waveforms. The ensuant waveforms are similar to NLFM (though 

never explicitly enforced), revealing per-pulse autocorrelation 

performance resembling that of NLFM. Importantly, because 

each waveform is distinct from the others, slow time processing 

results in incoherent range sidelobes as observed for random FM 

(RFM). This hybrid random FM (HRFM) class demonstrates 

reduced range sidelobes relative to NLFM. As a consequence of 

pulse-to-pulse diversity, Doppler sidelobes slightly increase due to 

range mainlobe modulation (RMM) in trade for the improved 

range performance. 

 

Keywords—waveform diversity, random frequency modulation 

(RFM), nonlinear frequency modulation (NLFM). 

I. INTRODUCTION  

Traditional methods to incorporate range sidelobe 

minimization into waveform design were explored first in [1], 

which leveraged the principal of stationary phase to design the 

instantaneous frequency of chirp waveforms to match power 

spectrum shapes corresponding to low autocorrelation 

sidelobes due to their Fourier transform pair. This nonlinear FM 

(NLFM) design was extended for shaping arbitrary discrete 

power spectra in [2]. With optimization [3], the spectral match 

between the NLFM and the desired power spectrum can also be 

improved. However, a key tenet of NLFM design is a 

monotonic instantaneous frequency with increasing time – thus 

mitigating time-frequency interactions to better match the 

desired power spectrum template. For specific power spectrum 

shapes, many continuous-time expressions have been derived 

to describe NLFMs to simplify analysis and/or hardware 

implementation (see appendix of [4]). 

Since then, a plethora of pulsed waveform designs have 

been examined that minimize matched filter range sidelobes  

[5], apply a-priori knowledge of the illuminated scene to inform 

the transmission [6], and diversify waveforms for improved 

per-pulse and coherent aggregate range estimation [7]. Random 

FM (RFM) waveforms have noise-like qualities, while 

maintaining constant amplitude and continuous phase attributes 

amenable to high power amplification [7].  Similar to NLFM, 

RFM design can be improved via optimization of their 

autocorrelation [5] or power spectrum [8]. Due to pulse-to-

pulse varying phase/frequency characteristics, when RFMs are 

coherently combined they additionally benefit from an 

incoherent correlation sidelobe averaging that reduces self-

interference [7]. 

A common reference for waveform design is the ambiguity 

function [11]. The ambiguity function describes the expected 

range estimate of a moving point scatterer (for a continuum of 

velocities) after correlating with the transmit waveform 

matched filter. For analysis of a single pulse, the ambiguity 

function is often described either as Doppler-tolerant or 

Doppler-selective (called a “thumbtack” ambiguity). NLFMs 

exhibit a Doppler tolerant ridge, while RFMs typically exhibit 

thumbtack behavior [12]. Recalling that ambiguous energy is 

preserved, individual RFMs cannot attain quite the degree of 

low sidelobe performance as NLFM near zero Doppler (i.e. 

autocorrelation). The Doppler-tolerant ridge of the NLFM 

effectively acts as a “sink” for ambiguous energy, allowing for 

improved autocorrelation performance. 

To maintain Doppler tolerance, waveform designs exist that 

enforce a similarity constraint to linear FM (LFM) waveforms 

having a Doppler ridge [13]-[14], with the realized resemblance 

measurable by a range-Doppler coupling factor [15]. In [5], it 

was observed that minimization of NLFM autocorrelation 

sidelobes (without monotonicity constraints) yielded a similar 

waveform – but now having frequency perturbations that 

improves sidelobe performance. Of course, reduction of 

autocorrelation sidelobes inherently pushes energy elsewhere 

in the ambiguity function, which may not be of concern for 

sufficiently slow moving scatterers imposing Doppler less than 

the reciprocal of pulse duration (𝑓D ≪ 1/𝑇p) . Likewise, 

sidelobe minimization may degrade spectral containment [16]. 

Here, the per-pulse autocorrelation sidelobe optimization 

outlined in [5] is extended to include a spectral containment 

constraint. By initialization with NLFMs having small random 

phase perturbations, each optimized waveform exhibits an 

improved peak sidelobe level (relative to a standard NLFM) 

and a marginally nonrepeating phase/frequency structure from 

pulse-to-pulse. Importantly, the optimization sufficiently 

diversifies these waveforms to provide incoherent range 

sidelobes after slow time Doppler processing (akin to RFMs). 

These hybrid RFM (H-RFM) waveforms demonstrate the per-

pulse sidelobes of NLFMs and aggregate performance of 

RFMs. The lower bound of combined autocorrelation sidelobe 



performance is then described by the optimum spectrally 

contained power spectrum that minimizes peak sidelobes [10]. 

II. WAVEFORM OPTIMIZATION 

In [16], a discretized constant-modulus waveform model 
was considered that incorporates a phase modifier quasi-basis 
function expressed as 

 
𝐬 =

𝑒𝑗𝛟

√𝑀
=

𝑒𝑗𝐁𝐱

√𝑀
 

 

(1) 

where 𝐱 represents 𝑁 × 1 discrete waveform parameters and 𝐁 
is the 𝑀 × 𝑁  quasi-basis function, which forms the 𝑀 × 1 
signal phase 𝛟. The denominator normalizes the signal vector to 
have unit energy. Here, the quasi-basis is set to an identity 
matrix 𝐁 = 𝐈 to form an angle modulated waveform [9], since 
spectral containment constraints will implicitly limit the inter-
sample phase transitions [8]. The autocorrelation function 

 𝐫 = 𝐀𝐻(�̃�𝐬 ⊙ (�̃�𝐬)
∗
) (2) 

can be represented in terms of the 𝐾 × 𝐾  unitary discrete 
Fourier transform (DFT) matrix 𝐀  and the 𝐾 × 𝑀  truncated 

(otherwise unitary) DFT matrix  �̃� , where 𝐾 = 2𝑀 − 1  to 
represent correlation. Here, we wish to minimize the 
autocorrelation sidelobes (selected by a binary mask 𝐰sl). The 
sidelobe performance is sufficiently characterized by the 
objective function 

 𝐽 = ‖𝐰sl
 ⊙ 𝐫(𝐱)‖𝓅

𝓅
  (3) 

where ‖∙‖𝓅  indicates the vector 𝓅-norm, 𝓅 = 2 quantifies the 

integrated sidelobe level (ISL) and 𝓅 = 8  is used to 
approximately quantify peak sidelobe level (PSL). As noted in 
[16], waveform spectral containment is necessary. A spectral 
containment constraint is imposed that controls the power 
spectrum energy in regions designated by 𝐰f, which contains 
ones in selected stopbands and zeros otherwise. The constraint 
is then expressed as 

 𝐺 = ‖𝐰f
 ⊙ (𝐀𝐬)‖2

2 − 𝛾‖𝐬‖2
2 < 0 (4) 

where 𝛾  is the maximum total energy ratio permitted in the 
designated regions of 𝐰f

 , indicating a percent energy 

occupancy. Here, we select 𝛾  to be 𝛾 = 𝜇(𝟏𝑇𝐰f
 )/𝑀2  where 

𝜇 = 4 relaxes the constraint. The contained energy low sidelobe 
(CELSI) optimization is ultimately expressed as 

 min
𝐱

‖𝐰sl
 ⊙ 𝐫(𝐱)‖𝓅

𝓅
 

s. t.  ‖𝐰f
 ⊙ (𝐀𝐬)‖2

2 − 𝛾‖𝐬‖2
2 < 0 . 

 

(5) 

The gradient of the objective function is determined as [5] 

 𝛁𝐱𝐽 = 2𝓅𝐁𝑇ℑ {𝐬∗ ⊙ [�̃�
𝐻

(�̃�𝐬

⊙ [𝐀(|𝐫|𝓅−2 ⊙ 𝐫 ⊙ 𝐰sl)])]}  

(6) 

and the gradient of the constraint is 

 𝛁𝐱𝐺 = 2𝐁𝑇ℑ{𝐬∗ ⊙ (�̃�𝐻[(�̃�𝐬) ⊙ 𝐰f] − 𝛾𝐬)} .  (7) 

The problem is solved via the augmented Lagrange optimization 
routine outlined in [17]. The inner gradient descent algorithm 
applies L-BFGS which is known to converge with minimal 

computational cost [18], as implemented in the open source 
Tensorlab library [19]. To enforce this inequality spectral 
constraint, the augmented Lagrangian function is posed as 

 ℒ = 𝐽 + (𝜆 +
𝜇

2
𝐺) 𝐺+ 

(8) 

for 𝜆  the Lagrange multiplier and 𝜇  a penalty parameter that 
takes on a large value when the constraint is not satisfied. The 
function (∙)+ = max{0, ∙ }  extracts the positive part of the 
argument, and results such that iff 𝐺 > 0, the penalty parameter 
𝜇 increases to subsequently place more emphasis on addressing 
the constraint violation. The resulting gradient of (8) is 

 𝛁𝐱ℒ = 𝛁𝐱𝐽 + (𝜆 + 𝜇𝐺)+𝛁𝐱𝐺 . (9) 

Minimization of this Lagrangian gradient descent framework 
produces waveforms having adequate spectral containment with 
minimized sidelobes. 

III. SIMULATED RESULTS 

The selected initialization 𝐱init for the CELSI optimization 

significantly impacts the resulting waveform. Here, the initial 

signals are formed by combining an NLFM phase 𝛙  with 

random phase perturbations 𝛉~U(−𝜋, 𝜋) expressed as 

 𝐬init = 𝑒𝑗𝐱init = 𝑒𝑗(𝛙+𝛼𝛉) (10) 

where 0 < 𝛼 < 1  scales 𝛉  to shrink or grow the deviations.  

For large 𝛼, the initialization is sufficiently random such that 

the optimized waveforms tend toward RFM behavior.  

For small 𝛼, the NLFM phase structure is dominant but the 

random phase deviations can influence each pulse optimization 

toward slightly dissimilar local minima to form H-RFM 

waveforms. These H-RFM waveforms are similar to the initial 

NLFM waveform (though never explicitly constrained), but the 

small phase deviations impart sufficient randomness to achieve 

the benefit of incoherent autocorrelation sidelobe integration 

upon slow time processing. 

The selected NLFM initial waveform that determines 𝛙 is 

first defined, which provides a near-optimal deterministic 

waveform having minimized autocorrelation sidelobes. The 

CELSI optimized waveform sets, formed by applying (10) to 

yield both RFM and H-RFM classes, are analyzed in terms of 

their autocorrelation function, ambiguity function, point-spread 

function and inter-pulse cross-correlation to demonstrate 

relevant tradeoffs. 

A. Nonlinear FM Waveforms 

 Spectral shaping of traditional NLFM waveforms is most 
commonly achieved by applying the principle of stationary 
phase (POSP) [1]. For an FM waveform of monotonically 
increasing frequency over time, the instantaneous frequency 
𝑓i(𝑡) of the signal can be approximately determined according 
to the desired spectrum shape 𝑑(𝑓), as described in [20]. The 
choice of spectrum shape impacts the waveform autocorrelation 
characteristics, surveyed in [21]. For a time-limited waveform, 
the degree of match to the desired spectrum is never without 
error. When an NLFM is matched to a spectrum pertaining to 
low sidelobes, such as a Gaussian, the achieved per-pulse 



autocorrelation sidelobe level is approximately 1/(𝑇𝐵)2, where 
𝑇𝐵 is the time bandwidth product. 
 Separately, the limitations of correlation-based processing 
were assessed by determining the optimum null-constrained 
power spectrum that minimizes correlation sidelobe levels. 
Herein, the NLFM is shaped to the discretized optimum 

spectrum �̂�f from [10] that minimizes autocorrelation sidelobe 
levels for a specified mainlobe resolution while maintaining 

spectral null constraints. This template �̂�f  is found from the 
convex objective function 

 min
𝐝f

‖𝐞 − 𝐀𝐻𝐝f‖𝓅
𝓅

                                                   

s. t.  𝑑f,𝑚 ≤ 𝛾𝑚   for 𝑚 ∈ Λ                                  

      0 ≤  𝑑f,𝑚   for 𝑚 = 0, 1, … , 𝑀 − 1

 

 

(11) 

where 𝑚 = 0, 1, … , 𝑀 − 1 indicates discrete frequency, 𝐞 is the 
desired autocorrelation response (a unit impulse), 𝐀  is the 
𝑀 × 𝑀 discrete Fourier transform matrix, 𝛾𝑚 is the constrained 
maximum value for the associated 𝑑f,𝑚 when 𝑚 is in the subset 

Λ (i.e. null constraints), and selection of 𝓅 = 2 minimizes ISL 
whereas 𝓅 → ∞ minimizes PSL. Different degrees of mainlobe 

resolution are achievable by replacing �̅�  rows of 𝐀 
(corresponding to autocorrelation mainlobe roll-off) with zeros. 
Here 𝛾𝑚 = 10−3 (or 30 dB depth), 𝓅 = 8 to well-approximate 
PSL minimization, and �̅� = 5 are used. The suppressed regions 
Λ are selected for digital frequencies of Λ ∈ (−0.5, −0.25) ∪
(0.25, 0.5) . Note that this optimum template that minimizes 
PSL is closely tied to the Dolph-Chebyshev window [22], 
though the spectrum obtained in (11) is explicitly spectrally 
contained and also capable of tuning to minimize ISL (or “ in-
between” sidelobe metrics for 2 < 𝓅 < ∞). 
 Upon calculating the fixed optimal spectrum shape, the 

NLFM spectrum is matched to �̂�f by numerically calculating the 
instantaneous frequency function and thus the deterministic 
phase function 𝛙 via the POSP as outlined in [20]. The NLFM 

waveform represented by 𝑒𝑗𝛙  exhibits near-optimum sidelobe 
levels, with residual sidelobe error on the order of 1/(𝑇𝐵)2 . 
Because NLFM waveforms are usually repeated, their achieved 
correlation sidelobe level is static upon slow time combination 
for Doppler estimation. 

B. Comparison of RFM and H-RFM Waveforms 

The CELSI optimization routine that solves (5) via (8) and 

(9) is performed with two initializations described by (10). 

Here, 𝐰f
  selects a stopband in the regions of Λ , while 𝐰sl

  

minimizes sidelobes outside of the selected mainlobe resolution 

indicated by �̅� = 5 single-sided roll-off samples. Selecting an 

initial phase perturbed NLFM with 𝛼 = 1  sufficiently 

randomizes the phase, so the optimized waveform exhibits 

noise-like qualities akin to the RFM class. Rather, when  

𝛼 = 0.5 the phase deviations introduce variation, but an NLFM 

structure still remains – thus generating the H-RFM waveform 

class upon optimization. The optimization is performed for  

𝑃 = 1000 waveforms each having 𝑀 = 1000 samples, where 

each initialization is provided different random perturbations 𝛉. 

The instantaneous frequency structure of 10 optimized 

RFM (𝛼 = 1) and H-RFM (𝛼 = 0.5) are shown in Figure 1, 

with the frequency structure of the initial NLFM waveform 

overlaid for reference. Instantaneous frequency indicates time-

frequency characteristics and the maximum phase transition 

between waveform samples. As noted in [8], the optimized 

angle modulated waveforms both implicitly demonstrate a 

maximum phase transition between −𝜋/2 and 𝜋/2 (with only 

occasional excursions) due to power spectrum containment, 

allowing for near-continuous phase required for high power 

amplification. The mean power spectra for 𝑃 = 1000 pulses of 

NLFM, RFM, and H-RFM waveforms are shown in Figure 2, 

with the power spectrum �̂�f determined from (11) overlaid. 

Interestingly, the CELSI optimization is never explicitly 

informed of the spectrum �̂�f – rather the PSL metric is directly 

minimized for individual waveforms. Because the H-RFM 

maintains structure from the initial NLFM waveform (matched 

to �̂�f), the resulting local optima are influenced to the NLFM 

spectrum shape as indicated in Figure 2. In contrast, the RFM 

are sufficiently randomized to realize major deviations from the 

NLFM shape, as indicated by increased spectral flattening. 

 
Figure 1: Instantaneous Frequency of 10 RFM waveforms (multicolored, top) 
and 10 H-RFM waveforms (multicolored, bottom) and an NLFM waveform 

(black). 

 
Figure 2: Mean power spectrum 

1

𝑃
∑ |�̃�𝐬𝑝|

2

∀𝑝  of NLFM, RFM, H-RFM, and 

optimum �̂�f for 𝑀 = 1000 samples and 𝑃 = 1000 pulses. 



It is well known that a deterministic signal autocorrelation 

𝐫 = 𝐬 ⋆ 𝐬 and power spectrum 𝐫f = |�̃�𝐬|
2
 are Fourier transform 

pairs, such that 𝐫 = 𝐀𝐻|�̃�𝐬|
2
. Due to linearity of the Fourier 

transform operator, a pair likewise exists between the mean 

autocorrelation and the mean power spectrum across 𝑃 pulses: 

 
1

𝑃
∑ 𝐫𝑝

∀𝑝

= 𝐀𝐻 (
1

𝑃
∑|�̃�𝐬𝑝|

2

∀𝑝

). 

 

(12) 

Waveforms having spectral shapes that adhere closest to �̂�f in 

the mean power spectrum implicitly exhibit minimized 

autocorrelation sidelobes after coherent integration. The RMS 

autocorrelation indicates typical per-pulse sidelobe 

performance, expressed as √
1

𝑃
∑ |𝐫𝑝|

2
∀𝑝 . 

The RMS autocorrelation of each waveform class are 

illustrated in Figure 3. The RMS PSL of the RFM is 

−37.55 dB , while the NLFM exhibits −46.78 dB  and the  

H-RFM achieves −50.00  dB. In agreement with [5] the  

H-RFM improves on the PSL relative to the NLFM by 3.22 dB. 

Additionally, the H-RFM achieves an RMS PSL improvement 

of 12.45 dB relative to the RFM waveforms. The notable 

difference in RMS PSL performance between the RFM and H-

RFM is simply understood by examining their respective mean 

ambiguity functions shown in Figure 4, determined via 

 
𝜒(𝑡, 𝑓D) = ∑ |∫ 𝑠𝑝

∗(𝜏)𝑠𝑝(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓D𝑡 𝑑𝜏|
2

∀𝑝

. 
 

(13) 

Noting that the total ambiguous energy is conserved [11], the 

H-RFM can minimize zero-Doppler range/delay sidelobes by 

driving energy into other Doppler regions. The RFM 

waveforms alternatively maintains uniform range-Doppler 

sidelobes across the entire space. The H-RFM Doppler 

tolerance is similar to that of NLFM waveforms [12]. 

 

Figure 3: Root-mean-squared autocorrelation √
1

𝑃
∑ |𝐫𝑝|

2

∀𝑝  of NLFM, RFM,  

H-RFM and optimum 𝐀𝐻�̂�f  for 𝑀 = 1000  samples and 𝑃 = 1000  pulses, 

indicating per-pulse range sidelobe performance. 

 
Figure 4: Mean ambiguity function of NLFM (top), RFM (middle), and H-RFM 

(bottom) for 𝑀 = 1000  samples/pulse and 𝑃 = 1000  pulses. The RFM is 

Doppler selective, while the NLFM and H-RFM are Doppler tolerant. 

The non-repeating and optimized nature of H-RFM 

provides another beneficial quality. Because each H-RFM 

waveform has a slightly dissimilar power spectrum, the mean 

power spectrum can more closely match to an optimal solution. 

Alternatively, NLFM demonstrate Fresnel ripple in their power 

spectrum which hinders the degree of spectral match. By the 

Fourier relation in (12), waveform sets which exhibit a smooth 

mean power spectrum similar to �̂�f will achieve minimal mean 

autocorrelation sidelobe levels. The mean autocorrelation of 

NLFM, RFM, and H-RFM are shown in Figure 5. The mean 

PSL of the RFM is −39.40 dB, while the NLFM still exhibits 

−46.78 dB  and the H-RFM achieves −58.33  dB. The  

H-RFM improves on the PSL relative to the NLFM by 11.55 

dB. Additionally, the H-RFM achieves a mean PSL 

improvement of 18.93 dB relative to the RFM waveforms.  

The combined range sidelobe performance improvement of 

H-RFM in comparison to NLFM is a direct consequence of the 

increased degrees of freedom introduced by marginal pulse 

diversity, which effectively counteracts Fresnel ripple in the 

mean power spectrum. To produce H-RFM waveforms, other 

optimization algorithms may be applicable [8]. Similarity 

constraints could feasibly control the degree of achieved phase 

randomness in the H-RFM waveform structure [13],[14].  

Of important note, the phase deviations introduced via (10) 

alone (without optimization) do not improve the mean power 

spectrum and autocorrelation, since the aggregate response 

trends to the initial NLFM waveform as 𝔼{𝑒𝑗(𝛙+𝛼𝛉)} ≈ 𝑒𝑗𝛙 . 

The waveform optimization realizes the smooth mean power 

spectrum that provides enhanced autocorrelation features. 



 
Figure 5: Mean autocorrelation 

1

𝑃
∑ 𝐫𝑝∀𝑝  of NLFM, RFM, H-RFM, and 

optimum 𝐀𝐻�̂�f  for 𝑀 = 1000  samples and 𝑃 = 1000  pulses, indicating 

coherently combined range sidelobe performance. 

A known difference between near-deterministic and noise-

like waveforms lies in their cross-correlation performance. 

NLFM waveforms are often pulsed in a repeated manner, 

indicated ambiguities in range and Doppler dependent on the 

selected pulse repetition frequency (PRF). RFM waveforms 

have demonstrated low cross-correlation between adjacent 

pulses that provides opportunity for range disambiguation [24].  

H-RFM waveforms are observed to exhibit slight decorrelation 

between pulses. The cross-correlation between pulse 𝑝 and the 

subsequent pulse 𝑝 + 1 are shown in Figure 6, for both RMS 

(indicating per-pulse performance) and mean (indicating 

aggregate performance) metrics. As anticipated, the NLFM is 

entirely correlated pulse-to-pulse. The RFM exhibits an RMS 

cross-correlation peak of −25.81 dB  and mean peak of 

−46.38 dB  indicating separability. In contrast, the H-RFM 

demonstrates a cross-correlation RMS peak of −1.93 dB and 

mean peak of −2.20 dB indicating degraded separability. 

 
Figure 6: Root-mean-squared and mean cross-correlation of NLFM, RFM, and 

H-RFM waveforms between pulse 𝑝 and 𝑝 + 1 for 𝑃 = 1000 pulses. 

Because RFM waveforms introduce range sidelobe 

modulation (RSM), it is useful to examine the point spread 

functions (PSF) of each waveform set, which is defined as 

 
Υ(𝑡, 𝑓D) = |∑ 𝑤𝑝 (∫ 𝑠𝑝

∗(𝜏)𝑠𝑝(𝑡 − 𝜏) 𝑑𝜏) 𝑒
−𝑗2𝜋(

𝑓D
𝑓PRF

)𝑝

∀𝑝

|

2

 
 

(14) 

where 𝑤𝑝 represents a slow time taper weight for the 𝑝th pulse. 

Here, a Taylor window is applied to mitigate Doppler sidelobes. 

The PSF of the NLFM waveform set demonstrates typical 

range-Doppler sidelobes and a sparse background in Figure 7. 

The PSF of the RFM and H-RFM waveform sets are shown in 

Figures 8 and 9, respectively. The RFM waveforms produced 

via the CELSI optimization demonstrate anticipated RSM [7]. 

Both RFM and H-RFM exhibit range mainlobe modulation 

(RMM) due to variations in the pulse-to-pulse mainlobe rolloff 

resulting from the CELSI algorithm. RMM induces a band of 

energy across Doppler upon slow time-Doppler processing [4]. 

For the CELSI optimization, the RFM exhibits a peak RMM of 

−34.00 dB, while the H-RFM has a peak RMM of −51.08 dB 

(4.3 dB less than the NLFM autocorrelation PSL). This RMM 

can be alleviated by using template based waveform 

optimizations that implicitly minimize mainlobe dissimilarity 

[8], joint range-Doppler sidelobe minimization [25], or least 

squares mismatched filter pulse compression in exchange for 

slight mismatch loss [10]. 

IV. CONCLUSIONS 

Through constrained minimization of peak sidelobe levels, 
H-RFM waveforms having characteristics of both NLFM and 
RFM classes were generated and characterized. The tradeoffs 
between RFM and H-RFM have been explored in terms of 
autocorrelation performance, cross-correlation waveform 
separability, and Doppler tolerance/selectivity. With sufficient 
degrees-of-freedom, H-RFM can achieve a mean power 
spectrum and autocorrelation approaching the optimum bound 
from [10] with fewer pulses than are required for RFM. 

 
Figure 7: Point-spread function of 𝑃 = 1000 repeated NLFM pulses with slow 

time Taylor window. 



 
Figure 8: Point-spread function of 𝑃 = 1000 diverse RFM pulses with slow 

time Taylor window. 

 
Figure 9: Point-spread function of 𝑃 = 1000 diverse H-RFM pulses with slow 

time Taylor window. 
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