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Abstract—Matched illumination waveform design seeks to
improve classification and detection performance by leveraging
a priori information about the expected scattering from the
illuminated environment. This approach leads to a waterfilling
solution, in which more power is allocated to high-SNR frequency
channels, resulting in improved discrimination capabilities. While
much research has been devoted to the derivation and design
of matched illumination waveforms, the question remains of
how much benefit is obtained by the matched illumination
approach. In the context of physical waveforms, we compare the
classification and detection performance of matched illumination
waveforms to that of traditional optimized RFM waveforms. The
relative capability of MI is examined via Monte Carlo simulation,
where the simulated test object consists of simulated azimuth-
dependent scattering characteristics of a Toyota Camry.

Index Terms—matched illumination, mutual information,
waveform diversity

I. INTRODUCTION

Due to advances in radar transmit architectures, radar wave-
form optimization has become an increasingly deep field of
research, with a plethora of solutions provided for varied
application spaces. Significantly, physically-realizable optimal
waveforms have been posed seeking to minimize range-
sidelobe-induced self-interference [1], [2], perform spectral
deconfliction [3], and provide combined radar/communications
functionality [4], [5]. In each of these cases, the assumption
is that the probing sensor maintains high enough SNR that
the waveform correlation error (e.g. sidelobes) is greater than
random errors due to receiver noise. Somewhat less attention
has been paid to the problem of designing optimal physical
waveforms for radars operating in adverse conditions, where
the input SNR may be low.

The seminal work of Mark Bell [6] introduced information-
theoretic waveform design methods for detection and classifi-
cation of extended scattering profiles. Bell’s optimal detection
waveforms seek to maximize the signal-to-noise ratio (SNR)
at the output of the radar receiver for a known scattering
response. This approach leads to an eigenvector solution,
which has also been applied to the target identification problem
[7], [8]. Bell’s optimal estimation waveforms maximize the
mutual information between an ensemble of expected scatter-
ing responses and the received radar signal. This ensemble-
based approach lends itself to waveform design in a high-
resolution radar (HRR) context, in which target identification
is especially sensitive to the radar-target orientation [9], [10].

These optimal estimation waveforms are deemed “matched
illumination” (MI) waveforms, since the design procedure
seeks to match the waveforms to the illuminated environment.

Much research has been devoted to the design and analysis
of Bell’s optimal estimation waveforms. A significant contri-
bution lies in [11], which derives the optimal detector for the
optimal estimation waveforms. In terms of implementation,
constant modulus and spectral containment constraints have
been imposed on the optimal estimation waveform design
formulation [12], [13] so that the resulting waveforms are
conducive to physical realization in RF hardware. An outline
of alternative MI waveform design metrics is provided in [14],
and [15] uses a gradient-based approach for an ensemble that
follows a Gaussian mixture model. Detection via sequential
hypothesis testing is examined in [16], which poses MI wave-
form design in a cognitive radar context. Another overview of
MI is given in [17].

Here, a physically-realizable implementation of MI wave-
forms is presented, followed by a discussion of a framework
for sequential classification and detection stages. The MI
waveform design procedure is simulated for an ensemble con-
sisting of angle-varying HRR scattering profiles of a Toyota
Camry. Further simulation results examine the classification
and detection performance of the MI waveforms relative to
that of traditional optimized RFM waveforms. Comparisons
of classification and detection capability obtained from this
simulation are used to determine the benefit of MI design over
traditional RFM waveform design.

II. RADAR SIGNAL MODEL & MATCHED FILTERING

The goal of MI waveform design is to leverage a priori
information about the observed scattering scene to improve
detection and classification performance over that achieved by
traditional radar waveforms. To understand the impact of the
chosen waveform design procedure on a subsequent estimate
of the scene, it is imperative to examine the signal model.
Given an ensemble of L possible time-domain scattering
profiles {gℓ(t)} for ℓ = 1, 2, ..., L, the received radar signal is
modeled as a linear convolution process with additive noise,
which is described as

y(t) = α(s(t) ∗ ḡ(t)) + n(t) (1)
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where ḡ(t) ∈ {gℓ(t)}, n(t) is complex-valued additive white
Gaussian noise (AWGN), and α is a scalar herein modeled as a
zero-mean and unit-variance complex normal random variable.

To classify the true delay profile ḡ(t) from the set of
hypotheses, estimation is performed via matched filtering.
Since it is assumed that the true scattering profile exists in
the set of hypotheses, define ȳℓ(t) as the ideal received signal
corresponding to the ℓth profile, such that

ȳℓ(t) = s(t) ∗ gℓ(t), (2)

which results in the matched filter expression

hℓ(t) = s∗(−t) ∗ g∗ℓ (−t). (3)

Then, the matched filter estimate is

zℓ(t) = hMF,ℓ(t) ∗ y(t)dt
= [s∗(−t) ∗ g∗ℓ (−t)] ∗ [α(s(t) ∗ ḡ(t)) + n(t)],

(4)

or in the frequency domain (taking the Fourier transform),

Zℓ(f) = [S∗(f)G∗
ℓ (f)] · [αS(f)Ḡ(f) +N(f)]

= |S(f)|2Ḡ(f)G∗
ℓ (f) + S∗(f)G∗

ℓ (f)N(f).
(5)

From (4) and (5), the matched filter estimate of the true
scattering profile is corrupted by waveform artifacts (from
transmission/matched filtering) as well as noise. Mismatched
filtering [18]–[20] may be effective at minimizing these
waveform artifacts at the cost of SNR loss, which may be
undesirable if already SNR-limited. Since the purpose of MI
is to improve detection/classification by transmitting only in
“good” spectral channels (those that are not SNR-limited),
only matched filter processing is considered here to avoid
further SNR penalty.

III. MI WAVEFORM DESIGN

A. Background

The optimal estimation waveforms from [6] leverage a
priori knowledge of the expected scattering to achieve im-
proved classification performance. From an information the-
oretic perspective, if the mutual information between the
matched filter estimate from (5) and the ensemble of spectral
profiles characterizing the expected scattering is higher, then
classification is more accurate. To this end, these optimal
estimation waveforms have the following PSD:

P (f) = max

{
0, A− σ2

n

σ2
G(f)

}
, (6)

where σ2
n is the noise power (assuming white Gaussian noise),

σ2
G(f) is the spectral profile variance, and the scalar A is

determined via the following signal energy constraint∫ B/2

−B/2

P (f)df − Es = 0, (7)

where B is the signal bandwidth, and Es is the signal energy.
The implication of (6) is that MI waveform design requires

a significant amount of prior knowledge of scattering char-
acteristics, which may not be possible to obtain in practice.

Explicitly, (6) requires knowledge of the spectral variation
among the hypothesized scattering profiles (which may be
significant [21]) as a function of frequency. The required prior
information is further compounded through dependence on
other factors such as azimuth angle, elevation angle, and SNR.
If all of these are known, then the solution to (6) follows
a waterfilling approach, whereby more power is allocated to
frequencies at which the variance across the ensemble of
spectral profiles is significant, relative to the noise power.

B. Implementation

The detection/classification problem presented here consid-
ers a single stationary object that may or may not be present
in the scene, which is being illuminated by a monostatic radar.
It is assumed that the elevation angle to the region of interest
is known, but the range and azimuth angle between the region
of interest and platform are unknown. Therefore, the ensemble
of expected scattering {Gℓ(f)} consists of spectral profiles of
the object for each possible azimuth angle (indexed by ℓ),
with classification being performed in the frequency domain
for computational convenience.

Since the range to the object is unknown, we introduce a
random phase rotation on each spectral profile as

G̃ℓ(f) = Gℓ(f)e
jφℓ . (8)

Assuming that φℓ is a random phase that is uniformly dis-
tributed on [0, 2π), the frequency-dependent mean of each
profile µ̃ℓ(f) is zero, so the sample variance across ensemble
of spectral profiles simplifies as

σ2
G(f) =

1

L

L−1∑
ℓ=0

|G̃ℓ(f)− µ̃ℓ(f)|2

=
1

L

L−1∑
ℓ=0

|Gℓ(f)|2.

(9)

In the particular implementation considered here, the Gℓ(f)
are normalized to unit energy so that each has equal impact
in (9). This step is especially important for profiles that are
comprised of just a few dominant scatterers.

It is convenient to reformulate (6) to explicitly include a
spectral taper W (f) [23] as a means of enforcing spectral
containment of the optimized waveforms via

P̃ (f) = max

{
0,W (f)

(
A− σ2

n

σ2
G(f)

)}
, (10)

which necessitates replacing P (f) with P̃ (f) in (7). The tem-
plate from (10) and its corresponding signal energy constraint
from (7) are evaluated in tandem using MATLAB’s fzero
[22] function to simultaneously determine the signal energy
required to achieve an expected SNR and the scalar A to
satisfy the constraint. This numerical approach is necessary
since σ2

G(f) may not have an analytical form. The final
template is then provided to the pseudo-random optimized FM
(PRO-FM) waveform design framework [24], which leverages
repeated time-frequency alternating projections to produce



physically realizable waveforms having a prescribed spectral
shape.

IV. PROFILE CLASSIFICATION

The statistic leveraged for profile classification is a normal-
ized version of the matched filter response. Selecting the zero-
lag instant of (4), define the normalized correlation coefficient
ρ2ℓ as

ρ2ℓ =
|zℓ(0)|2

∥y(t)∥2∥gℓ(t)∥2
, (11)

which may be equivalently stated in the frequency domain, via
Parseval’s Theorem, as

ρ2ℓ =

∣∣∣∫∞
−∞ Gℓ(f)Y (f)df

∣∣∣2
∥Y (f)∥2∥Gℓ(f)∥2

. (12)

This approach is consistent with that of the adaptive coherence
estimator (ACE) [25], [26], which measures coherence while
remaining invariant to scaling of the input vectors.

Rather than developing an optimal L-hypothesis classifier,
it is more efficient to first calculate ρ2ℓ for all ℓ ∈ 1, 2, ..., L,
choose the maximally correlated profile, and then consider a
case of binary detection in which the noise-only hypothesis
is considered. This methodology separates the classification
problem into two stages: 1) classification based on the maxi-
mization of (12), and 2) detection of the maximally correlated
hypothesis. For the classification stage, there are L hypotheses,
defined as

Hℓ : Z(f) = |S(f)|2Gℓ(f) + S∗(f)N(f) ℓ = 1, 2, ..., L.
(13)

Classification is performed by determining

ℓ̂ = argmax
ℓ

{ρ2ℓ} (14)

corresponding to spectral profile Gℓ̂(f). The maximum corre-
lation coefficient ρ2

ℓ̂
is then compared to a detection threshold

to determine whether or not the hypothesized object is actually
present in the scene.

The profile classification leads to a binary detection stage,
which consists of two hypotheses

H0 : Z(f) = S∗(f)N(f)

H1 : Z(f) = |S(f)|2Gℓ̂(f) + S∗(f)N(f),
(15)

where Gℓ̂(f) is obtained from the procedure in (14). Assuming
that, in the target-present case, the observed profile is correctly
classified, the likelihood ratio test (LRT) may be stated as

P (ρ2ℓ |H1)

P (ρ2ℓ |H0)

H1

≷
H0

γ, (16)

where γ is the detection threshold for the LRT. The threshold
is found by solving the integral equation

PFA =

∫ γ

0

P (ρ2ℓ |H0)dρ
2
ℓ (17)

for γ. Due to the normalization in (12), the likelihood functions
for each hypothesis are not straightforward to compute and

integrate. As such, (17) is solved approximately via Monte
Carlo methods that are discussed in the following section.

V. MONTE CARLO SIMULATION

A. Waveform Design

The object of interest considered here for classification is
a Toyota Camry, whose scattering characteristics have been
obtained from [27]. This dataset consists of spectral profiles
for azimuth angles between 0.0625◦ and 360◦, spaced by
0.0625◦, for a 30◦ elevation angle. Fig. 1 shows the normal-
ized correlation between the spectral profiles as a function
of azimuth angle. The Camry exhibits symmetric structures,
most notably in the prominent correlation along the anti-
diagonal. Moreover, the main diagonal has some azimuthal
width, indicating that the correlation length of the Camry is
greater than 0.0625◦ (that is, the data is spatially oversampled).

Fig. 1. Correlation between Camry spectral profiles as a function of azimuth
angle

Fig. 2 shows the spectral variance σ2
G(f), obtained via (9),

along with the single spectral profile at ϕ = 46◦ (correspond-
ing to ℓ = 10) for the Camry. The spectral variance trends
downward as a function of frequency, which is supported by
the observation that most of the power in the ϕ = 46◦ profile
is allocated at the lower frequencies. Thus, we should expect
the MI waveform design procedure to allocate most of the
power to the lower frequencies, since this is where the spectral
variance is the highest.

As a proof-of-concept for assessing the efficacy of MI wave-
form design, in comparison with traditional RFM waveform
optimization [24], a high-dimensional Monte Carlo simulation
was constructed. The simulation varies the noise n(t) and
scattering coefficient α from (1), as well as the waveform
initialization provided to both the MI and traditional RFM
design procedures. Since highly correlated profiles may not
be readily distinguished, as well as for Monte Carlo runtime
considerations, the ensemble used for the MI waveform design
consists only of profiles between azimuth angles 10◦ and 86◦,
spaced by 4◦ (20 profiles total).



Fig. 2. Spectral variance σ2
G(f) via (9) and single spectral profile G10(f)

Fig. 3 shows the MI PSD templates, obtained via (10), for
various SNRs, where W (f) is a super-Gaussian taper with
exponent 32 [28] to provide good spectral containment. Here,
SNR is specified before matched filtering, and the templates
have been energy-normalized for plotting purposes to facilitate
comparison. For the high-SNR case (magenta trace), the MI
PSD template approaches W (f) since, via (10), fewer of
the frequency bins are noise-limited, and so each receives
a power near A. As the SNR degrades (remaining traces),
the noise begins to dominate (most notable towards the right-
hand portion of the spectra), so no power is allocated to
these portions of the templates. However, due to the signal
energy constraint in (7), when a narrower spectrum is used,
more relative power is available to allocate towards spectral
locations with higher SNR.

Fig. 3. PSD templates via (10) for various SNRs

B. Detection & Classification

To ascertain the benefit of MI, the same simulation is re-
peated for MI waveforms designed to (10) and traditional RFM

waveforms designed via PRO-FM to match the super-Gaussian
taper W (f), which has a 3 dB bandwidth of approximately
4.5 GHz. The Camry is placed at a range of 8 km, with the
assumption that this range is known (obtained from GPS/INS
data in a practical scenario) to within a range bin. The
simulation presented here emulates a spotlight mode collect
at an elevation angle of 30◦ for azimuth angles between 10◦

and 86◦, separated by 4◦ (same as the MI design ensemble).
At each azimuth angle, a single waveform of each type is
transmitted. The simulation is repeated 5000 times, where
SNR is specified prior to matched filtering.

Fig. 4 shows the normalized correlation coefficient from
(11) for a single run as a function of azimuth angle for
the MI waveforms and the regular PRO-FM waveforms at
truth azimuth angle ϕ = 46◦ and -13 dB SNR. The MI
case exhibits some correlation to non-truth profiles since the
waveforms are designed to an ensemble of all profiles, with
the correlation to the truth profile being especially high.
However, this correlation to non-truth profiles may lead to
incorrect classification; in Fig. 4, the correlation coefficient at
ϕ = 78◦ is quite high (relative to the maximum) and therefore
could produce an incorrect classification in a different run.
For regular PRO-FM, correlation to the non-truth profiles is
generally slightly lower, but so is correlation to the truth
profile.

Fig. 4. Normalized correlation coefficient ρ2ℓ via (12) for MI and regular
PRO-FM at azimuth angle ϕ = 46◦ and -13 dB input SNR

Fig. 5 shows the classification rate for the MI and regular
PRO-FM cases as a function of azimuth angle for vari-
ous SNRs. The traces show that, for low input SNRs, MI
waveforms generally provide slightly improved classification
performance, relative to that of PRO-FM. For the high-SNR
case (magenta trace), both MI and regular PRO-FM perform
correct classification nearly all the time for all angles. As SNR
degrades, the classification rate degrades as well, becoming
quite poor at -30 dB, with an average classification rate of
21% and 19% for MI and regular PRO-FM, respectively.
Moreover, for the lower SNRs, the classification rate varies
across azimuth angle, with this variation being more sigificant



for the MI case than the regular PRO-FM case. This is again
due to the fact that the MI waveforms are designed to an
ensemble of all profiles, and it is possible that one profile with
dramatically different scattering characteristics could skew the
design template.

Fig. 5. Classification rate as a function of azimuth angle for MI and regular
PRO-FM, where the SNRs specified in parentheses are measured prior to
matched filtering

The average classification rates obtained via simulation are
summarized in Table I. These results indicate a quantitative
improvement in the classification rates for the MI waveforms
when compared to regular PRO-FM at the same SNR. While
the average classification rates are nearly identical for the
3 dB SNR case, MI achieves 5% better classification, on
average, than regular PRO-FM for the -23 dB SNR. Though
less dramatic, MI also outperforms regular PRO-FM for the
-30 dB and -13 dB SNRs, achieving 2% and 1.3% average
improvement, respectively.

TABLE I
AVERAGE CLASSIFICATION RATE ACROSS AZIMUTH ANGLE FOR MI AND

REGULAR PRO-FM
MI PRO

SNR = −30 dB 21% 19%
SNR = −23 dB 60.9% 55.9%
SNR = −13 dB 95.5% 94.2%
SNR = 3 dB 99.9% 99.9%

After classification, the binary detection procedure de-
scribed by (16) and (17) is used to reject possible false
alarms due to noise. To solve for the detection threshold in
(17), histograms of ρ2ℓ are formed from the Monte Carlo data
discussed above, which are then leveraged to approximate the
likelihood functions P (ρ2ℓ |H1) and P (ρ2ℓ |H0). The histograms
for the input SNRs of -23 dB and -13 dB are depicted in
Figs. 6 and 7, respectively. For both SNRs, the histograms
indicate that the distributions of ρ2ℓ corresponding to the target-
present hypothesis are shifted slightly to the right for the MI
case compared to the regular PRO-FM case. Despite this,
the distributions for the null hypotheses are nearly identical
for both waveform classes and both SNRs. Consequently,
improved detection results are achieved for the MI waveforms.

Fig. 6. Histograms of ρ2ℓ via (12), formed from the Monte Carlo data for an
input SNR of -23 dB

Fig. 7. Histograms of ρ2ℓ via (12), formed from the Monte Carlo data for an
input SNR of -13 dB

From the histograms depicted in Figs. 6 and 7, (17) can
be used to approximately solve for the detection threshold γ.
With this threshold, a binary detection problem is constructed
according to (16). The resulting receiver operating character-
istic (ROC) curves generated via this procedure are shown in
Fig. 8. For the lower SNRs, the ROCs clearly demonstrate the
improved detection capability provided by the MI waveforms,
when compared to regular PRO-FM. Fig. 8, combined with
Fig. 5, suggests that prior knowledge of the SNR, as well as
the scattering characteristics of the scene, can be leveraged to
improve the classification and detection capabilities of a radar
system.

VI. CONCLUSIONS

The benefit of MI waveform design for scattering profile
classification has been examined in simulation using physically
realizable random FM (RFM) waveforms. MI can provide
enhanced classification capability relative to RFM waveforms



Fig. 8. ROCs for MI and regular PRO-FM at various input SNRs

optimized only for general spectral containment. This benefit
arises primarily in low-SNR scenarios, where the waterfilling
solution for MI uses only a small portion of the available
bandwidth, improving the SNR for frequency bins where the
a priori profiles are most different. This SNR-based allocation
emphasizes discrimination capability within the design profile
ensemble. Incorporation of the PRO-FM spectral shaping
method into the MI waveform design ensures that the realized
waveforms meet the FM structure requirements making them
amenable to high-power transmitters. Furthermore, incorpora-
tion of a spectral taper into the MI template ensures that the
implemented waveforms are spectrally contained and therefore
physically realizable.
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