
Quadratic Majorization-Minimization in

Regularized Radar Imaging

Lee C. Potter

Ohio State University

Columbus, OH, USA

Shannon Blunt

Kansas University

Lawrence, KS, USA

Samuel Pine

Matrix Research, Inc.

Dayton, OH, USA

Abstract—Quadratic majorization-minimization is found in
a 1937 paper by Weiszfeld and provides an easily accessible
iterative optimization algorithm for non-convex and non-smooth
optimization tasks; the iteration is often referred to as “iteratively
re-weighted least squares” (IRLS). In this manuscript, IRLS is
employed as a unifying tutorial description of many regularized
imaging techniques previously proposed for radar imaging. The
cost function implicit in an IRLS imaging approach is made
explicit, yielding a Bayesian interpretation with specific underly-
ing assumptions regarding clutter, noise, and prior distribution
on the unknown range-angle-Doppler maps. In particular, the
IRLS framework is used to establish the convergence and sparse
imaging properties of the reiterative super-resolution (RISR) [1]
and background supplemental loading (BaSL) [2] algorithms.

Index Terms—radar imaging, iteratively re-weighted least
squares, non-convex optimization

I. INTRODUCTION

Iteratively re-weighted least-squares (IRLS) is a method for

solving minimization problems involving non-quadratic cost

functions, possibly non-convex or non-smooth. The solution

is found by successively determining the minimizer of a

quadratic surrogate that locally approximates and bounds the

original cost function. The sequence of quadratic problems is

easily tackled with numerical linear algebra. The simplicity

and generality render the approach familiar and versatile;

indeed, Google Scholar reports 43,900 results for “itera-

tively re-weighted least squares.” Forming and minimizing

a quadratic surrogate function that upper-bounds the cost

function is an example of majorization-minimization. In this

manuscript, we use IRLS as a unifying framework for a host

of imaging algorithms found in the literature. The frame-

work is used to establish convergence and describe sparse

recovery properties. Significantly, the tutorial makes explicit

the underlying assumptions on clutter and image priors that

are implicit in an imaging algorithm. Codes are available at

github.com/ECE36/IRLS.

Let x denote the complex-valued radar image to be recov-

ered from radar data. Any imaging method consists of three

components, here expressed in the language of Bayesian esti-

mation. First, there is a choice for the negative log likelihood

function, f(x), which incorporates a forward model of the
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physics relating the unknown scene, x, to the noisy measure-

ments, y. To specify the function f(x), physical assumptions

are adopted, such as radar waveforms, propagation character-

istics, antenna patterns, and a plane-wave approximation. The

function f(x) also includes assumed probability distributions

describing clutter and thermal noise. Second, there is a choice

of an image prior. A regularization penalty, λg(x), may

be interpreted as adopting a prior distribution on the scene

proportional to e−λg(x). For example, many priors have been

suggested to encourage a sparse scene [3]–[8]. Note that

g(x) may be non-quadratic, non-convex, or not everywhere

differentiable. Third, there is a choice of numerical procedure

for minimizing the risk function J(x) = f(x) + λg(x). The

estimated scene, x̂, minimizing the risk may be interpreted as

a maximum a posteriori probability (MAP) estimator,

x̂ = argmin
x

J(x) = argmin
x

f(x) + λg(x). (1)

II. SIGNAL MODEL

Radar scattering is modeled as linear, so discretization of a

scene yields the linear measurement model

y = Ax+ w, (2)

where A ∈ Cm×n, x ∈ Cn, and w ∈ Cm models clutter plus

thermal noise as a zero-mean complex Gaussian random vector

with covariance R. The vector y ∈ Cm combines data samples

across fast-time, pulses, and array channels. Generally, we

encounter m < n. Derivation of the discretized forward

operator, A, is found in many texts and papers for a variety of

imaging scenarios and is therefore omitted here. For a phased-

array radar, x represents sampled bins in range, azimuth,

elevation, and range rate (Doppler). Given covariance, R, the

Gaussian likelihood function imposes data fidelity, and the

negative log likelihood is, to an additive constant

f(x) = 1
2‖R−1/2(Ax− y)‖22. (3)

The action of the whitening filter, R−1/2, suppresses clutter

and noise modeled by the additive Gaussian component, w ∼
CN (0, R), in (2).

III. REGULARIZATION PENALTY

In radar imaging, the task of inverting f to determine the

unknown scene, x, may be ill-conditioned or even ill-posed.

Accordingly, a regularization penalty is adopted to stabilize the
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Fig. 1. Illustration of several separable penalty functions, φ, each of which
gives rise to an implied image prior and diagonal weighting matrix, P(k),
in the iteratively re-weighted least-squares algorithm. The penalty functions
encourage sparse solutions. The third and fourth lines shown in legend
correspond to rows four and five of Table 1 and have been scaled and translated
for visualization.

inversion, and the penalty implicitly imposes an assumed prior

distribution on the scene, x, in the Bayesian interpretation.

For the regularization penalty, λg(x), consider a separable

function of the form λg(x) = λ
∑

i φ(xi), where φ is a

scalar function operating on a single pixel, or “bin” xi, of

the range/angle/Doppler scene, x. To begin, we highlight the

choice

g(x) =

n∑

i=1

φ(xi) =

n∑

i=1

(
|xi|2 + ǫ

)q/2
. (4)

This choice of functional g is an ǫ-smoothed version of the

q-norm of the scene. A choice of 0 < q ≤ 1 has been widely

adopted to promote a sparse scene [3]–[6]. For 0 < q < 1,

(4) fails the triangle inequality and is a quasi-norm. Further,

for 0 < q < 1, g(x) is neither convex nor everywhere

differentiable. The first column of Table I lists five example

choices of φ found in the literature [3], [4], [9]–[15].

IV. IRLS

To proceed with solution of the optimization task in (1),

we follow a quadratic majorization-minimization approach; an

early example is found in a 1937 paper by Weiszfeld [16], and
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Fig. 2. (a) Illustration of quadratic majorization-minimization of a notional
non-convex cost. At each iteration, parameters x are updated by a minimizing
quadratic approximation, seen here as the dashed red parabola upper-bounding
the solid black cost surface. (b) Quadratic majorization of φ(xi) = (|xi|2 +
ǫ)q/2 at xi = 2 for q = 0.8, ǫ = 0.001.

the approach is sometimes known as Lawson’s method owing

to its appearance in a 1961 doctoral dissertation [17].

A. Quadratic majorization-minimization

Consider a current estimate, x(k), of the scene. The cost

function J(x) in the vicinity of x(k) is approximated as a

quadratic G(x, x(k)) that dominates J(x) and is tangent to

J(x) at x = x(k). This is illustrated in Fig. 2(a). Then, the

unique global minimum of the quadratic G(x, x(k)) provides

an easily computed update,

x(k+1) = argmin
x

G(x, x(k)). (5)

Because f(x) from (3) is already quadratic in x, construc-

tion of the quadratic majorizer G(x, x(k)) of J(x) requires

only quadratic majorization of g(x). Further, g(x) is conve-

niently separable as a scalar function on each entry of x, so we

focus on a quadratic majorizer, h(z), of the function φ(z). To

illustrate, we continue with the case φ(z) =
(
|z|2 + ǫ

)q/2
.

Because φ(z) = φ(−z), the quadratic function is h(z) =
w0|z|2 + c0. Now, given a point z0 (e.g, from the previous



iteration), we seek h(z) to match both φ(z) and its derivative

at z0, as illustrated in Fig. 2(b):

h(z0) = φ(z0) (6)

h′(z0) = φ′(z0). (7)

By direct differentiation, (7) implies a weight w0 given by

w0 = q
2

(
|z0|2 + ǫ

)q/2−1
. (8)

Thus, we have learned

h(z) = z∗p−1
0 z + c0 (9)

where p0 = 1/w0 = 2
q

(
|z0|2 + ǫ

)1−q/2
and some constant c0

depending on z0 via (6). Note the exponent 1 − q/2 is non-

negative for q ≤ 2. Continuing, because h(z) is convex while

φ(z) is concave, (6) and (7) imply that h(z) ≥ φ(z) for all z.

Thus, returning to the penalty function g(x) in (4) defined

using the full vector of pixels, x, we have the quadratic

majorization of J(x) at iterate x(k)

G(x, x(k)) = 1
2‖R−1/2 (Ax− y) ‖2 + λ q

2x
HP−1

(k)x+ ck

where H denotes conjugate transpose, ck is a constant term

depending on x(k), and P(k) is a diagonal matrix with entries

P(k)[i, i] =
(
|x(k)

i |2 + ǫ
)1−q/2

. (10)

Thus, we arrive to the simple update rule,

x(k+1) = argmin
x

‖R−1/2 (Ax− y) ‖2 + λqxHP−1
(k)x. (11)

First-order optimality for the quadratic cost in (11) yields

x(k+1) =
(
AHR−1A+ λqP(k)

)−1
AHR−1y, (12)

Define λ̃ = λq. Invertibility of R−1 and the matrix inversion

lemma1 provide the alternative formulation,

x(k+1) = P(k)A
H
(
AP(k)A

H + λ̃R
)−1

y. (13)

The iteration in (13) solves the MAP estimation in (1) using

a sequence of quadratic problems. The negative log likelihood

term, f(x), adopts the linear data model embodied in A
and a multivariate Gaussian model on the clutter plus noise,

with covariance R. This clutter plus noise covariance may

be estimated from auxiliary data, for example [19], [20]. The

iteration in (13) also implicitly adopts a prior distribution on

the image; the negative log prior is λg(x) = λ
∑

i φ(xi). Each

choice of scalar penalty function, φ, results in a choice of

this image prior and in turn defines the diagonal matrix P(k)

computed from the reconstructed scene at each iteration. A

few example choices of φ are depicted in Fig. 1.

The same IRLS procedure producing (13) can be applied

to any g(x) that is concave in |x|2. Table I lists the scalar

updates for the diagonal entries of P(k) for several choices

of regularization function, φ. Note also that the smoothing

parameter, ǫ, may be varied with iteration number k, resulting

in limk→∞ ǫ(k) = 0.

1The matrix inversion lemma (e.g., [18]): for invertible matrices A and C,
(A + BCD)−1BC = A−1B(C−1 + DA−1B)−1 . Additionally, (A +
UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

B. Conjugate gradients

We can approximately solve (13) at each IRLS iteration, k,

using a few conjugate gradient (CG) steps. To this end, define

C =

[
P

1/2
(k) A

HR−1/2

√
λ̃I

]
u =

[
0
1√
λ̃
R−1/2y

]
. (14)

Define θ(k+1) as an intermediate variable in Cm; by direct

computation, we have

θ(k+1) = (CHC)−1CHu (15)

=
(
R−1/2AP−1

(k)A
HR−1/2 + λ̃I

)−1

R−1/2y. (16)

And, from (13)

x(k+1) = P(k)A
HR−1/2θ(k+1). (17)

Each CG step requires only two whitening operations, R−1/2,

and one application each of the forward operator, A, and

its adjoint, AH . The linear model operator, A, often can

be computed with fast Fourier transforms without explicitly

forming the very large m×n matrix. Further, a simple Jacobi

pre-conditioner may provide nice computational advantage,

especially if the same R−1/2 is used for many observations.

V. REITERATIVE MMSE

In a sequence of papers including [1], [2], [21], Blunt,

Gerlach, Jones and co-authors arrive at the same approach via

a “reiterative minimum mean squared error” (RMMSE) frame-

work, motivated by strategies from code division multiple

access multi-user detection. The RMMSE facilitates nulling

of self-interference from side-lobes, which in the IRLS frame-

work is seen as a consequence of the sparsity inducing prior,

g(x). The “reiterative super resolution” (RISR) algorithm [1]

implicitly adopts a covariance R for additive noise and the

φ(xi) = log |xi|+ǫ penalty in Table I with ǫ = 0. Additionally,

the background supplemental loading (BaSL) algorithm [2]

extends RISR to include clutter covariance in the λ̃R loading

term.

A. Log penalty

We next consider the log penalty seen in line 4 of Table I

and show that the log penalty is a limit of q quasi-norms as

q → 0. With g(x) = 1
q ‖x‖qq , we have

x̂ = argmin
x

f(x) + λg(x) (18)

= argmin
x

f(x) + λg(x) − λn
q (19)

= argmin
x

f(x) + λ

{
1
q

n∑

i=1

(|xi|q − 1)

}
(20)

Now, consider the limit as q → 0.

lim
q→0

1
q (|xi|q − 1) = lim

q→0

|xi|q − 1

q
(21)

= lim
q→0

d
dq{|xi|q − 1}

d
dq{q}

(22)

= lim
q→0

|xi|q ln |xi| (23)

= ln |xi|. (24)



where (22) follows from application of L’Hôpital’s rule. Thus,

the log penalty function may be interpreted as the limit of the

q-norm penalty as q goes to zero.

B. Smoothing

The ǫ > 0 appearing in Table I provides a smoothing

of the q-norm, resulting in φ differentiable at the origin.

This smoothing has been widely employed, playing a role in

both effective numerical results [3], [4], [12] and convergence

proofs [12], [13]. Experimental evidence [3], [12] suggests

that ǫ > 0 improves performance for q < 1, enabling IRLS to

recover signals with more nonzero components compared to

the un-smoothed version.

In the reiterative MMSE framework, a scaling is optionally

employed to modify the IRLS iteration in (13)

x(k+1) = Q(k)A
H
(
AP(k)A

H + λ̃R
)−1

y, (25)

where the [i, i] element of the diagonal matrix Q(k) is given

by

Q(k)[i, i] =
1

aHi
(
AP(k)AH + σ2I

)−1
ai
. (26)

Here, ai is the ith column of A and σ2I is the noise-

only component of the clutter-plus-noise covariance matrix,

R. This scaling is similar to forcing weight vectors to have

unit energy, as in minimum variance distortionless response

(MVDR) beamforming, but omits the clutter component from

the covariance matrix.

From the IRLS framework, we learn that the scaling in

(25)-(26) performs the same smoothing effect as ǫ in (4).

Note firstly that for any matrix A matrix having orthonormal

columns, it is easy to verify that Q(k)[i, i] = |xi|2+σ2. Hence,

for orthonormal A the MVDR-inspired scaling is equivalent

to the ǫ-smoothing in (13) for ǫ = σ2. Secondly, for more

general A ∈ Cm×n, consider keeping m rows at random from

the unitary discrete Fourier transform (DFT) matrix with {k, l}
entry 1√

n
e−j2πkl/n. In this case, the Q(k)[i, i] concentrates at

|xi|2+ǫ with ǫ = nσ2/m. (The concentration of measure proof

is omitted here due to length.) Hence, the MVDR-inspired

scaling in (25)-(26) is very similar to the ǫ-smoothing of the

φ function in (4) for ǫ = nσ2/m.

VI. MMSE ESTIMATOR

As an aside, consider the special case of a zero-mean

multi-variate Gaussian prior on the scene, with covariance

Σ. The MAP image then coincides with the minimum mean

squared error (MMSE) estimator and the best linear unbiased

estimator:

x̂Σ = (AHR−1A + σ2Σ−1
︸ ︷︷ ︸
Tikhonov

regularization
of MLE

)−1 AHR−1y︸ ︷︷ ︸
whitened

matched filter

(27)

= ΣAH
(
AΣAH + σ2R

)−1
y (28)

where (28) is obtained from (27) by application of the matrix

inversion lemma. As indicated by the bracketed notation in

(27), the inverse covariance Σ−1 of the image prior provides a

Tikhonov regularization of the least-squares solution, combat-

ing any ill-conditioning and providing existence of an inverse

even if A is not full column rank. Additionally, the term

AHR−1y is the whitened matched filter, which employs the

inverse covariance of the clutter-plus-noise term. However, the

covariance Σ of the image prior is not known in practice.

VII. CONVERGENCE AND SPARSE RECOVERY

A. Convergence

For any φ(x) that is concave in |x|2 on [0,∞), the IRLS

sequence gives a descent method for argminx f(x)+λg(x),
and thus is convergent to some local minimum [22]. At each

step of the IRLS procedure, a quadratic problem is solved,

and conjugate gradient steps are used to this end. However, in

practice the CG steps must be terminated before convergence.

Yet, Fornasier et al. [23] established thresholds such that early

termination of CG steps does not prevent convergence of the

IRLS procedure.

For q ≥ 1, the costs in Table I are convex and the

IRLS converges to the global optimum. For 0 < q < 1,

three observations are available from the literature. First, as

q decreases there is increasing sensitivity to local minima and

choice of initialization. Second, for a specific schedule of ǫ(k)

as a function of iteration number k, Daubechies et al. [13]

established a post-facto certificate of global convergence, but

the certificate may be sensitive to finite precision computation.

Third, empirical results [12] exhibit global convergence in

many cases, especially when using a schedule of ǫ(k) → 0 and

q(k) → q∗ < 1. These empirical results informally suggest:

select q less than 1 for a super-linear rate of convergence; and,

select a scheduled smoothing constant, ǫ(k) → 0 to mitigate

local minima.

B. Sparse recovery

The literature from compressed sensing provides sufficient

conditions under which an under-determined system of linear

equations, y = Φx + w, m < n, admits a unique, stable

solution when x can be well approximated by only K or fewer

non-zero entries. For the radar imaging scenarios considered

here, the linear operator Φ corresponds to the whitened for-

ward model, R−1/2A.

For sparse recovery guarantees, consider the q-nullspace

property: no signal in the nullspace of Φ can have half or

more of its q-norm “energy” on only K coefficients [24]. If

R−1/2A has the q-nullspace property, then all minimizers of

f(x) + λ‖x‖q, 0 ≤ q < 1, coincide with the (unique) ℓ1
minimizer.

Given this result, one might ask: why not just use the convex

ℓ1 regularization penalty given that solutions coincide for 0 <
q < 1? The answer lies in two benefits. First, q < 1 can offer

a super-linear local convergence rate [13], [25]. Second, q < 1
has been empirically observed to provide robust recovery for

larger K [12].



VIII. DETECTION STATISTICS

A solution x̂ in (1) is often sought for the purpose of

detection. Recall ai denotes a single column of A. Define

iid secondary data vectors, zk, k = 1, ..., N , of clutter plus

thermal noise:

y = c ai + σ2w

zk = wk.

Consider the binary hypotheses

no target H0 y ∼ CN (0, σ2R), zk ∼ CN (0, R) iid

target H1 y ∼ CN (cai, σ
2R), zk ∼ CN (0, R) iid.

This gives rise to a composite test with three unknown

deterministic parameters: complex amplitude c ∈ C, noise

scaling σ2 ∈ R+, and covariance R. As developed by Kraut,

Scharf and Butler [26], the adaptive coherence estimate (ACE)

provides a test statistic that is the generalized likelihood ratio

test, is a uniformly most powerful invariant test, and has

constant false alarm rate (CFAR). The ACE test, for threshold

η, is

ti =
|aHi S−1y|2(

aHi S−1ai
)
(yHS−1y)

≷ η, (29)

where S = 1
N

∑N
k=1 zkz

H
k is the sample covariance matrix

from the secondary data. Note that S is the unconstrained

maximum likelihood estimate of R. Observe that ti is the

whitened matched filter output, magnitude squared and nor-

malized. The hypothesis test is conducted at each coordinate

of x by selecting ai, and this is accomplished without regard

to any correlations among the ai, i = 1, ..., n.

If the true signal, x0, has only a single non-zero element,

then the whitened matched filter provides a principled test

statistic for detection. But, if x0 has multiple non-zero entries

and the R−1/2ai candidate response vectors are not orthog-

onal, then performance of the GLRT degrades. The MAP

estimate, x̂, from (1) provides an alternative test statistic to

account for the side-lobes of one target biasing the ACE test

statistic for another target. Scaling to achieve a CFAR test, we

arrive to

ti =
|x̂i|2

(yHS−1y)
≷ η (30)

This is illustrated for one realization in Fig. 3, where A
is 170 × 512 and is generated by randomly drawn rows of

the DFT, normalized to have unit-length columns; additive

complex noise has unit power. Parameters are p = 0.8,

λ = 0.1, ǫ = 0.001, and 5 CG steps per iteration. The

matched filter result permits detection of the strong signals,

but weaker signals are lost in a myriad of false alarms due

to point response sidelobes; in contrast, the MAP solution is

able to deconvolve sidelobes, permitting detection of weaker

signals, despite locations being off-grid and therefore not

exactly matched to locations encoded in the columns of A.

For the third and fourth high-energy reflectors, additional low-

energy detections appear adjacent to the true positions to

account for the model-mismatch of off-grid points.
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Fig. 3. Matched filter, AHR−1y (top); MAP solution x̂ from (13) (bottom).
For illustration, simulated signals are off-grid and 11-sparse. A dynamic range
of 40 dB is displayed.

IX. PARTIAL HISTORY

Quadratic majorization-minimization and the resulting IRLS

iteration has appeared in many instances, including a 1937

use by Weiszfeld to minimize the weighted sum of Euclidean

lengths (the Fermat-Weber problem). Likewise, the approach

appears in Lawson’s 1961 dissertation for function approx-

imation with Chebyshev polynomials. Variants of the IRLS

algorithm have appeared many times under many names. The

brief discussion offered here is incomplete and merely meant

to be representative.

Katz (1974) [27] and Voss & Eckhardt (1980) [28] es-

tablished linear convergence rate of Weiszfeld’s algorithm.

Daubechies et al. (2008) [13] established convergence results

and sparse recovery proofs for the constrained case (y = Ax)

and a specified sequence ǫ(k) → 0; these results were gen-

eralized to the unconstrained case by Lai et al. (2013) [25].

Fornasier et al. (2016) [23] established convergence proofs

with incomplete CG iterations.

Variants of the IRLS algorithm have appeared numerous

times, including by Holland & Welsch (1977) [29] for robust

regression, Lee et al. (1987) [30] for bandlimited extrapolation,

and Han et al. (1997) [31] for solving nonlinear partial

differential equations. Bouman & Sauer (1993) [32] presented

an axiomatic selection of q-norm of the image gradient in

the context of edge-preserving regularized imaging. Vogel &

Oman (1996) [33] and Charbonnier et al. (1997) [34] similarly

adopted an ℓ1 penalty on the gradient for total variation

image denoising, and solved using IRLS. Gorodnitsky & Rao

(1997) [10] presented IRLS with ǫ(k) = 0 and q = 1 in the

“FOCUSS” algorithm and connected the result with sparse

recovery, providing sufficient conditions on A and the sparsity,

‖x‖0.

With particular application to radar imaging, the IRLS

algorithm appears in Cetin & Karl (2001) [3]; Kragh &

Kharbouch (2006) [4]; Tan et al. (2011) [11], Blunt, Chan

& Gerlach (2011) [1], and Jones et al. (2020) [2].



Interest in (1) with the ℓ1 norm penalty for deconvolution

has long history in seismic applications (e.g., Taylor et al.

1979 [35]). Rudin, Osher, & Fatemi (1992) [36] used ℓ1 norm

on the gradient for image denoising. Interest in a variety

of optimization tools for computing x̂ was spurred by the

compressive sensing results of Tao, Candes and Romberg

(2006) [37], and Donoho (2006) [38], for recovery of sparse

signals from linear measurements. Other than IRLS, perhaps

the most widely adopted solver is the fast iterative shrinkage-

thresholding algorithm (FISTA) by Beck & Teboulle (2009)

[39], which is an accelerated proximal gradient descent, and

hence a first order method readily applicable to large-scale

problems.

Chartrand & Staneva (2008) [40] and Chartrand & Lin

(2008) [12] spurred increased interest in q < 1, with empirical

evidence that the non-convex penalty can provide improved

convergence rate and can increase the number of non-zeros

in x that can be recovered. Further, Chartrand & Lin argued

for a cooling schedule on ǫ(k) as an empirically effective

“smoothing” to avoid local minima in the non-convex case.
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