
This work was supported by the Army Research Laboratory subcontract to Alion S&T for prime contract #FA8075-18-D-0002. 
DISTRIBUTION STATEMENT A. Approved for public release. 

Reiterative MMSE using Feed-Forward Prior 
Estimates for Improved Direction Finding 

Logan Satterfield1, Jonathan Owen1, Alex Bouvy2, Benjamin Kirk2, Patrick McCormick1, Shannon Blunt1 

1 Radar Systems Lab, University of Kansas, Lawrence, KS 
2 Army Research Laboratory, Adelphi, MD

Abstract— Reiterative super-resolution (RISR) is a variant of 
the reiterative minimum mean squared error (RMMSE) 
algorithm class, originally developed for adaptive direction 
finding. RISR was recently experimentally demonstrated to 
enhance open-air direction-of-arrival estimation while providing 
robustness to non-ideal calibration errors via practical modeling 
and incorporation of a gain constraint. RISR is generally 
initialized with a standard (non-adaptive) beamforming estimate. 

Here, the recycled estimate (RE)-RISR variant is proposed 
that instead uses RISR angle estimates from recent snapshots as 
an initialization, thereby avoiding the need for complete 
reconvergence at each snapshot. Given sufficient (yet modest) 
stationarity, RE-RISR significantly reduces the number of 
required iterations (and therefore computational cost). Simulated 
performance for a 6-element uniform circular array (UCA) with 
stationary and nonstationary incoming signals reveals robustness 
even in dynamic scenarios. 
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I. INTRODUCTION  
Direction Finding (DF) is the process of determining the 

spatial angles from which received signals impinge on a sensor 
array. Several signals may arrive simultaneously, and some 
may possess high temporal correlation (e.g. multipath). 
Classical DF techniques such as Capon beamforming, MUSIC, 
and ESPRIT [1]-[6] rely on the determination of a sample 
covariance matrix (SCM) from a set of spatial snapshots, which 
implicitly assumes a degree of stationarity.  

The RISR algorithm [7], [8] employs the reiterative 
minimum mean-square error (RMMSE) framework to perform 
adaptive DF via a structured covariance matrix that avoids an 
SCM, thus making it suitable when low sample support is 
required due to nonstationarity. The partially constrained RISR 
(PC-RISR) form [9] was subsequently considered to realize 
super-resolution in the low SNR regime by incorporating 
tunable selectively between standard RISR and a gain 
constrained version [10]. The PC-RISR form has been 
experimentally demonstrated to perform well on open-air data 
for both DF and fast time-frequency estimation [11], [12]. 
 The recycled estimate RISR (RE-RISR) variant is a 
modification of PC-RISR that replaces the standard (non-
adaptive) beamforming initialization with an adaptive DF 
estimate from the previous spatial snapshot in time. 
Consequently, convergence can be achieved with far fewer 
iterations per snapshot in stationary conditions. In quasi-
stationary or nonstationary cases, only mild degradation is 
observed that is proportional to the degree of nonstationarity. A 

collection of signals having modest stationarity in received 
angle over time yields DF performance that is indistinguishable 
from PC-RISR, achieved with far lower computational cost. 
Conceptually, dynamic modification of the number of iterations 
per snapshot for RE-RISR (i.e. only when needed due to 
perceived changes) would also further improve tolerance to 
nonstationarity, with the caveat of increased computational cost 
on an as-needed basis. 

The uniform circular array (UCA) provides a simple 
geometry to achieve 360° DF with limited antenna elements 
[13], though the associated array manifold is less advantageous 
due to high sidelobes. Here, both the RISR and RE-RISR forms 
are applied in simulation to a UCA having six antenna 
elements, demonstrating significant improvements in angle 
estimation over standard beamforming. RE-RISR estimation is 
compared to that of RISR, both qualitatively and quantitatively, 
for different signal arrangements. 

II. UCA STEERING MATRIX 
Consider the array factor for an arbitrary array geometry 

 AF(𝜃, 𝜙) =  ∑ 𝑤𝑛e j𝐜𝑛
𝑇𝐤(𝜃,𝜙)

𝑛

 

 

(1) 

where 𝑤𝑛 is the weight of the  antenna element, and  are 
elevation and azimuth, respectively. Given a narrowband 
spectrum assumption, the wave number (or K-space) spherical-
to-Cartesian transform vector is 

 
𝐤(𝜃, 𝜙) =  

2π

λc

[
sin 𝜙 cos 𝜃
cos 𝜙 cos 𝜃

sin 𝜃
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(2) 

and Cartesian coordinates of the  antenna element are 

 
𝐜𝑛 = [

𝑥𝑛

𝑦𝑛

𝑧𝑛

]. 
 

(3) 

Setting  (for a UCA on the x-y plane), the steering vector 
for an incoming signal arriving from angles  is represented 
by 

 𝐬(𝜃, 𝜙) = ej𝐂𝑇𝐤(𝜃,𝜙) (4) 

where  is the matrix of Cartesian array 
positions. For all 𝑀 look angles of interest (where ), the 
steering vectors 𝐬( ) are compiled into the columns of the 

 steering matrix 𝐒 as 



𝐒(𝜃, 𝜙) = [𝐬(𝜃1, 𝜙1) 𝐬(𝜃2, 𝜙2) ⋯ 𝐬(𝜃𝑀 , 𝜙𝑀)]. (5) 

III. REITERATIVE SUPER-RESOLUTION REVIEW 
Consider the single snapshot receive model for an N element 

arbitrary array at discrete time index ℓ, denoted as 

 𝐲(ℓ) ≜ (𝐒𝐱(ℓ)) ⨀ 𝐳 + 𝐯(ℓ) (6) 

 = 𝐒𝐱(ℓ) + 𝐯(ℓ) + 𝐯z(ℓ),  

where 𝐱(ℓ) defines the 𝑀 × 1  signal arriving from each 
possible spatial direction, 𝐯(ℓ) is an 𝑁 × 1 vector of additive 
noise, and 𝐲(ℓ) is the received signal on the antenna array for a 
given time snapshot. The vector z accounts for modeling errors 
and has nth element represented as 

 𝑧𝑛 = [1 + Δa,𝑛]ejΔφ,𝑛 , (7) 

where Δa,𝑛 is an amplitude error and Δφ,𝑛 is a phase error, both 
with arbitrary distributions. This formulation permits calibration 
tolerances to be accommodated. It is shown in [8] that 
minimizing the MMSE cost function 

 𝐽 = 𝔼{‖𝐱𝑘(ℓ) − 𝐖𝑘
𝐻(ℓ)𝐲(ℓ)‖2

2} 
 

(8) 

yields the 𝑁 × 𝑀 filter bank 𝐖𝑘(ℓ), having the mth column  

 
𝐰𝑚,𝑘(ℓ) = 𝐏𝑚,𝑚,𝑘

 (ℓ) (𝐒𝐏𝑘(ℓ)𝐒𝐻 + 𝐑 + 𝐑z,𝑘(ℓ))
−1

𝐬𝑚 

 

(9) 

The 𝑀 × 𝑀 diagonal matrix 𝐏𝑘(ℓ) contains the incident powers 
for the 𝑀  spatial directions for the ℓth  snapshot, the 𝑁 × 𝑁 
matrix R is the noise covariance, and the 𝑁 × 𝑁 matrix Rz,𝑘(ℓ) 
is the calibration error covariance defined in [8] as 

 𝐑z,𝑘(ℓ) = 𝐈σz
2⨀[𝐒𝐏𝑘(ℓ)𝐒𝐻], (10) 

for I an 𝑁 × 𝑁  identity matrix and 𝜎𝑧
2  the calibration error 

variance. The terms 𝐬𝑚 and 𝐏𝑚,𝑚,𝑘(ℓ) specify the mth column 
of S and the mth diagonal element of ℓ , respectively. 
Because the values in ℓ are not initially known, they must be 
estimated. Traditionally, RISR applies the standard (non-
adaptive) beamformer 

 �̂�0(ℓ) = 𝐒𝐻𝐲(ℓ), (11) 

to obtain the matrix of power estimates 

 �̂�𝑘(ℓ) =  [�̂�𝑘(ℓ)�̂�𝑘(ℓ)]⨀𝐈. (12) 

Using (9), the adaptive filter bank can be computed and applied 
to revise the estimates as 

 �̂�𝑘(ℓ) = 𝐖𝑘
𝐻(ℓ)𝐲(ℓ) (13) 

that are subsequently used to update (12) for the 𝑘th  of K  
iterations. This process of applying (9), (13), and (12) is repeated 
until acceptable convergence is achieved. The partial gain 
constraint from [9] can be incorporated to enable selectivity via   

𝐰PC,𝑚,𝑘(ℓ) = [(
1

𝐬𝑚
H 𝐃𝑘(ℓ)𝐬𝑚

)
𝛼

(𝐏𝑚,𝑚,𝑘(ℓ))
1−α

] 𝐃𝑘(ℓ)𝐬𝑚 , (14) 

in which 

 
𝐃𝑘(ℓ) = (𝐒𝐏𝑘(ℓ)𝐒H + 𝐑 + 𝐑z,𝑘(ℓ))

−1

 , (15) 

for exponent 0 ≤ α ≤ 1 the weighting factor that controls the 
balance between unconstrained RISR  (α = 0)  and fully 
constrained RISR (α = 1). 

IV. RECYCLED ESTIMATE RISR (RE-RISR) 
 The modification to implement RE-RISR is straightforward. 
Rather than initializing the adaptive filter bank with the standard 
beamformer in (11) for each new snapshot in time, we can 
instead initialize using the adaptive filter bank from the most 
recent snapshot as 

 �̂�0(ℓ) = 𝐖𝐾
𝐻(ℓ − 1)𝐲(ℓ). (16) 

Provided that snapshot 𝐲(ℓ) is sufficiently similar to snapshot  
𝐲(ℓ − 1), this initialization eliminates redundant processing that 
would otherwise occur in successive snapshots. Note that this 
initial estimate of �̂�0(ℓ)  also updates �̂�0(ℓ)  and therefore 
𝐒𝐏0(ℓ)𝐒𝐻 , improving upon the initial covariance estimate. 
Further, the power estimation matrix in (12) is modified for all 
iterations to include a perturbation term as 

 �̂�𝑘(ℓ) =  [�̂�𝑘(ℓ)�̂�𝑘(ℓ) + 𝜀]⨀𝐈. (17) 

The term 𝜀  is a small perturbation to avoid passing forward 
sparse a-priori estimates (which may occur for small partial 
constraints α ≤ 0.5 ) that would otherwise cause incorrect 
convergence for subsequent iterations. 
 Parallels may be drawn between RE-RISR and the Kalman 
filter, both of which rely on MMSE and an information feed-
forward mechanism [14]. The incorporation of the perturbation 
term 𝜀  is inspired by Kalman filter process noise, which 
prevents overconfidence in the model [14]. That said, 
distinctions exist, most critically the benefit of reiterative 
processing performed in the RMMSE framework to refine the 
current snapshot estimate without additional observations. 

V. SIMULATED RESULTS 
To examine the behavior of RISR (initialized with the 

standard beamformer) versus RE-RISR, a 6-element UCA with 
element spacing  and radius  is simulated 
for two scenarios. The selected UCA phase center locations are 
illustrated in Fig. 1. The adjacent element spacing corresponds 
to  spacing for  or frequency , 
which sets the array effective max operating frequency. While 

 spacing meets the spatial Nyquist criterion for ULAs, the 
UCA phase centers inherently lie on a non-uniform positional 
grid for Cartesian coordinates. Consequently,  spacing for a 
UCA implies a lower-bound on the maximum operable 
frequency of the array for all look angles assuming a planar 
incoming wavefront. 

All incoming signals are selected to arrive with ° such 
that only azimuth is estimated in all directions. In practice, non-
zero elevation  can only be discriminated within the limitations 
of the array factor in that dimension. The beampattern of the 
UCA is modestly invariant across azimuthal look angles, such 
that ensuing evaluation of DOA estimation performance is 
generalizable. Further, due to the rotational symmetry of the 
array, the beampattern repeats every 60° in azimuth under ideal 
calibration conditions [15]. 



 
Fig. 1. Six-element UCA antenna pattern, with element spacing  

 and radius . Note that  corresponds to the 
positive y direction.  

The first scenario (Case A) is intended to demonstrate 
baseline performance, where an LFM chirp is incident at -40 
degrees with 40 dB signal-to-noise ratio (SNR). The second 
scenario (Case B) demonstrates robustness to severe 
nonstationary effects and modest SNR discrepancies between 
incoming signals, where a pulsed chirp waveform with 50% 
duty cycle is incident at -40 degrees with 40 dB SNR and an 
OFDM signal arrives at 30 degrees with 10 dB SNR. The DF 
estimates produced by standard beamforming, RISR with 10 
iterations, RISR with 3 iterations, and RE-RISR with 3 iterations 
are shown for qualitative comparison. Because the RMMSE 
framework attempts to minimize mean squared error (MSE), it 
is the natural metric for relative quantitative performance 
evaluation. All incoming signals are simulated with a center 
frequency , bandwidth of , and max 
frequency . For both the RISR and RE-RISR 
cases, the partial gain constraint is set to . 
 For Case A, the DF estimates over time for each algorithm 
are shown in Figs. 2-5 and their achieved MSE relative to 
ground truth over time are shown in Fig. 6. Specifically, Fig. 2 
demonstrates the standard beamforming estimate for a single 
incident LFM chirp. The signal’s incoming spatial angle is 
correctly estimated, but the relatively broad mainlobe makes 
precise estimation of the true angle difficult. Additionally, the 
significant spatial sidelobes would easily overpower any 
modestly lower energy signals that could otherwise be present. 
Standard spatial windowing functions for circular arrays may be 
applied to suppress spatial sidelobes [16], at the cost of further 
mainlobe broadening and SNR mismatch loss. The ambiguity 
observed due to mainlobe rolloff and sidelobes is indicated by 
significant MSE (the purple trace) in Fig. 6. 
 Applying RISR with 10 iterations produces the DF response 
in Fig. 3, which well estimates the incoming signal and provides 
a significant decrease in mainlobe width relative to the standard 
beamformer. The achieved super-resolution is a consequence of 
an “angle adaptive tradeoff” that minimizes MSE. In other 
words, at high observed SNR values (40 dB for  
Case A), the RISR algorithm produces a filter bank  that 
exchanges SNR mismatch loss in order to improve MSE. 

 
Fig. 2. Case A; Magnitude of the standard matched beamforming estimate over 
time. The chirp waveform direction-of-arrival is properly estimated over time, 
but significant spatial mainlobe roll-off and sidelobes are present. 

 
Fig. 3. Case A; Magnitude of RISR estimate over time, with 10 iterations per 
snapshot. The signal direction-of-arrival is clearly defined at the true incoming 
angle, with minimal error. 

 The decrease and subsequent increase in MSE over time for 
10 iteration RISR (the red trace) in Fig. 6 is due to frequency-
angle coupling bias for lower chirp frequencies between 0 to 300 
ns and higher chirp frequencies between 700 to 1000 ns.  
The coupling is also observed in Fig. 3, where a coarser DOA 
estimate is present between 0 to 300 ns. Additionally, remnant 
spatial sidelobes appear in these temporal spans around the 150° 
azimuth look-angle with -40 dB suppression. 
 As evidenced in Fig. 4, reducing the iterations per snapshot 
of RISR increases the mainlobe width because the algorithm is 
not yet fully converged. The aforementioned frequency-angle 
coupling is also now more apparent, where the estimated spatial 
angle is slightly biased towards negative values between 0 to 
300 ns and towards positive values between 700 to 1000 ns. A 
clear tradeoff exists between RISR estimation performance and 
the computational cost of additional iterations. 



 
Fig. 4. Case A; Magnitude of RISR estimate over time, with 3 iterations per 
snapshot. The signal direction-of-arrival is coarser when RISR is performed with 
fewer iterations. 

 Now consider 3 iterations of RE-RISR, which yields the 
response in Fig. 5. Recycling of the filter bank from the previous 
snapshot in time achieves an improved estimate relative to 10-
iteration RISR (Fig. 3) with the same computational cost as 3-
iteration RISR (Fig. 4). The information fed forward permits 
continued refinement of the true spatial angle due to the near 
complete stationarity of the scene. In contrast to the slight 
mainlobe coarseness observed for 10-iteration RISR from 0 to 
300 ns in Fig. 3, RE-RISR further super-resolves the estimate. 
However, the remnant spatial sidelobes produced by RE-RISR 
at the 150° azimuth look-angle appear slightly coarser. These 
qualitative similarities indicate that 3-iteration RE-RISR yields 
a 70% computational cost reduction relative to 10-iteration 
RISR without estimation degradation. 

 

Fig. 5. Case A; Magnitude of the RE-RISR estimate over time, with 3 iterations 
per snapshot. RE-RISR with 3 iterations is able to qualitatively achieve the same 
estimation performance as RISR with 10 iterations (Fig. 3). 

 

 From Fig. 6, 3-iteration RE-RISR is able to converge to a 
solution with less or equal error than 10-iteration RISR for the 
Case A scenario. It should be noted that the error observed for 
RISR and RE-RISR having values  are largely due to 
frequency-angle coupling caused by the fast-time signal phase 
characteristics. Importantly, the zoomed inset of Fig. 6 indicates 
that RE-RISR has a “learning rate”, requiring nearly 6 temporal 
snapshots to fully converge to a minimized MSE of  
due to the feed-forward mechanism using fewer iterations. Of 
course, more iterations of RE-RISR can be performed per 
snapshot (with diminishing improvements in estimation). Doing 
so would be more computationally costly, but reduce the number 
of snapshots to achieve minimized MSE convergence. 

 
Fig. 6. Mean-squared error over time for Case A for each algorithm. 

 Case B is intended to stress the RE-RISR frequency-angle 
stationarity assumption with two signals. The pulsed chirp 
waveform illustrates the RE-RISR learning rate on slow-time 
scales. The OFDM waveform demonstrates rapidly varying fast 
time-frequency characteristics to additionally stress the learning 
rate. Lastly, the dynamic range between the chirp and OFDM 
waveforms is set to a 30 dB difference to examine small signal 
estimation.  
 In Fig. 7 the standard beamformer is applied to case B, with 
the pulsed chirp arriving from -40 degrees and the OFDM signal 
arriving from 30 degrees. When the chirp is active, the ensuing 
spatial sidelobes mask the OFDM signal, preventing it from 
being detected. Application of RISR with 10 iterations (Fig. 8) 
or 3 iterations (Fig. 9) allows the OFDM signal to be resolved 
when the pulsed chirp is active. For 3-iteration RISR, significant 
smearing of the OFDM signal occurs at the rise/fall times of the 
chirp waveform. By applying 10-iteration RISR, this effect is 
reduced but not eliminated. The sidelobes existing at  
present an estimation challenge for identifying small signals 
amidst a large signal error floor [17], [18]. 



 
Fig. 7. Case B; Magnitude of the standard matched beamforming estimate over 
time. The low SNR OFDM signal at  is masked by spatial sidelobes of 
the high SNR chirp signal at . Poor resolution and sidelobes mask 
direction-of-arrival estimation. 

  
Fig. 8. Case B; Magnitude of RISR estimate over time, with 10 iterations per 
snapshot. Both signals are detected, although sidelobes at  are not fully 
suppressed. 

 Fig. 10 shows the estimate for 3-iteration RE-RISR for the 
case B scenario, which is visually similar to that of 10-iteration 
RISR in Fig. 8. The primary difference is the focusing period 
when the pulsed chirp switches states. For the first snapshot after 
the chirp switches to on or off, the feed-forward initialization is 
incorrect, as it contains information about the chirp in its 
opposite state. Consequently, the RE-RISR estimate is less 
focused for transition snapshots. For the subsequent few 
snapshots, the algorithm re-focuses to a result that matches or 
surpasses 10-iteration RISR performance. The OFDM signal 
estimated by RE-RISR appears less focused than that of 10-
iteration RISR due to its fast frequency-angle coupled nature. 
However, RE-RISR does better at estimating the OFDM signal 
when the chirp waveform is active than that of 3-iteration RISR. 
This result demonstrates that RE-RISR is able to contend with 
moderate nonstationarities on both slow-time and fast-time 
scales.  

 
Fig. 9. Case B; Magnitude of RISR estimate over time, with 3 iterations per time 
snapshot. Both signals are detected, although estimates are significantly coarser. 

 
Fig. 10. Case B; Magnitude of the RE-RISR estimate over time, with 3 iterations 
per time snapshot. Additional error is present during nonstationary pulsed 
rise/fall times. The DOA for both signals are properly determined. 

If all observed signals are nonstationary in fast time, but 
stationary in angle, RE-RISR will defocus while still providing 
accurate angle estimation. RE-RISR may be challenged if the 
scene is highly nonstationary in angle (on the order of a few 
snapshots) where the algorithm cannot converge. Resilience to 
nonstationary incoming angle can be mitigated by increasing the 
number of iterations per snapshot, at the cost of increased 
computational cost. 
 It can be seen in Fig. 11 that the error magnitude for case B 
is much higher when the pulsed chirp is on, due to the significant 
increase in total power when the chirp is active. The error in Fig. 
11 is predominately caused by the higher power of the chirp 
signal. It then follows a similar pattern to the error in Fig. 6, on 
a shorter time scale for each pulse. 



 
Fig. 11. Mean-squared error versus time for Case B for each algorithm. 

VI. CONCLUSIONS 
The RE-RISR form is a modification of the RISR algorithm 

that has been demonstrated in simulation to improve angle 
estimation performance and lower computational cost in 
scenarios where modest stationarity can be assumed. The feed-
forward recycling of prior filter bank estimates, when at least 
partially accurate, greatly speeds up convergence, thereby 
allowing RE-RISR to reach an equivalent or superior result in 
fewer iterations when compared to RISR. This feed-forward 
technique can be applied to RMMSE estimators in other 
domains as well, given that the same quasi-stationary 
assumptions can be made. For instance, the spectrogram 
estimator demonstrated in [12] would potentially experience a 
significant reduction in computational cost through recycled 
estimation. 
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