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Abstract – This work seeks to elucidate the relationship between 
interfering frequency modulated (FM) radar waveforms and their 
observed separability. A statistical and analytical framework is 
developed through which the average separability is determined as 
a function of the mutual time-bandwidth product between the 
interfering waveforms. The analytically derived predictor for 
waveform separability is then compared to a long-observed 
heuristic. Since random waveforms exhibit stochastic cross-
correlations, the maximum deviation above the analytically 
derived predictor is also examined. High-dimensional Monte 
Carlo simulations are used to numerically validate the analytical 
results. 

Keywords – waveform diversity, noise waveforms, MIMO radar, 
multistatic radar 

I. INTRODUCTION 
It has been observed that the cross-correlation between two 

interfering waveforms is dependent on three primary factors: 1) 
their relative power levels, 2) the degrees-of-freedom (DoFs) 
possessed by the waveforms, and 3) the common alignment of 
those DoFs. The common dimensionality alignment is 
characterized by their overlapping temporal and spectral 
support [1,2]. For instance, two radars may alternate operation 
in a time-division manner to achieve perfect isolation [3,4]. 
With sufficient front-end filtering, essentially the same result 
can also be achieved via frequency-division given enough 
spectral separation and containment [5,6]. In other words, those 
cases imply zero common dimensionality in time or frequency. 

In general, one can define the common dimensionality for 
two radars in terms of the mutual time-bandwidth product, 
which is simply the product of the temporal support and spectral 
support that the radars share. Intuitively, it is this mutual time-
bandwidth product that ultimately determines the separability 
between distinct radar waveforms. The purpose of this paper is 
to provide mathematical rigor to this notion. 

First consider the well-known energy-normalized cross-
correlation between two waveforms 𝑠𝑠1(𝑡𝑡)  and 𝑠𝑠2(𝑡𝑡)  that have 
mutual time-bandwidth product denoted as (TB)12 to distinguish 
from the traditional single-waveform time-bandwidth product 
TB. The normalized cross-correlation is given by 

 𝑐𝑐1,2(𝜏𝜏) = 1
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for signal energies E1 and E2. The result in (1) describes the 
particular interference that the presence of 𝑠𝑠1(𝑡𝑡)  and 𝑠𝑠2(𝑡𝑡) 
impose upon one another when matched filtering for one of 
them is performed.  

For example, up-chirp and down-chirp linear frequency 
modulation (LFM) waveforms provide a useful baseline case. 
Fig. 1 illustrates their cross-correlation for different (TB)12 
values (here with complete overlap). Specifically, each pair has 
the same pulsewidth and equal-but-opposite chirp-rates to yield 
the same bandwidth. We observe that increasing (TB)12 by 
factors of 10× corresponds to a 10× reduction in the peak 
correlation value (determined by the edge ripples), which 
occurs at approximately −10log10(0.9(TB)12). This result is 
derived explicitly in Appendix A, where (1) is computed for the 
case of interfering chirp waveforms. Unsurprisingly, this result 
implies that increasing the shared dimensionality can provide 
improved separability, with the caveat that the waveforms be 
distinctly different.  

 
Fig 1: Up-chirp/down-chirp cross-correlations as a function of mutual time-

bandwidth product 
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In the case of up/down-chirps, it is also worth noting that the 
cross-correlation process involves only a single instantaneous 
point of time-frequency overlap for any lag value τ. Recalling 
how the principle of stationary phase [7] relates chirp-rate to a 
waveform’s energy-per-unit-frequency, these 10× higher chirp-
rates also suggest proportionally lower instantaneous spectral 
overlap between the up-chirp and down-chirp. While this 
perspective aids in our understanding of separability between 
LFM waveforms, the relationship is generally more 
complicated when addressing diverse waveforms. 

Previous work has examined the impact of separability on 
phase-codes and discrete sequences [8-11], providing analytical 
bounds on the achievable minimum cross-correlation for such 
signals. The design of so-called “orthogonal” and low-
correlation phase codes for use in code-division radar systems 
has also been examined [12-17]. However, since most radars 
operate a high-power amplifier in saturation, unwanted 
amplitude modulation arises when abrupt phase transitions 
occur [18,19], resulting in transmitter distortion that can hinder 
the utility of phase codes in practice. Consequently, we herein 
explore separability in the context of frequency modulated 
(FM) waveforms because their constant-amplitude/ continuous-
phase structure conforms to the requirements of high-power 
amplification. 

Now consider the cross-correlation between two interfering 
random frequency modulated (RFM) waveforms, a wide variety 
of which have been experimentally demonstrated in hardware 
to be appropriate for high-power radar applications and can 
provide high dimensionality (see [20] and references therein). 
The candidate waveforms here are unoptimized first-order 
polyphase-code FM (PCFM) [18] having complete overlap in 
temporal and spectral support. Since these waveforms are 
independent instantiations of a random process (here a uniform 
distribution on [−π, +π] for each underlying code element), it 
becomes necessary to examine their cross-correlation via 
Monte Carlo simulation, with rigorous analysis to follow in 
later sections. 

For the same 10× increment factors in mutual time-
bandwidth product, a randomly generated ensemble of 200 
independent waveforms was realized at each level, providing 
100 cross-correlation responses. Each set of cross-correlation 
responses were then root-mean-square (RMS) averaged to 
obtain a measure of per-pulse behavior. The results are depicted 
in Fig 2, which echoes the observations from Fig 1: i.e. mutual 
time-bandwidth is the driving factor in the separability of 
independent waveforms. It is also noteworthy that the zero-lag 
cross-correlation level in Fig. 2 is likewise approximately 
−10log10((TB)12), a fact that is explored further in the next 
section. 

Using these separability observations as a guide, the paper 
analytically derives the expected cross-correlation for 
independent instantiations of RFM waveforms, confirming this 
analysis with Monte Carlo simulations. The notion of a 
multistatic interference floor is then explored to establish how 
the distribution of scattering impacts separability. Finally, in 
addition to the mean cross-correlation, the maximum cross-

correlation is analytically derived since this attribute affects 
false alarms in the radar detection stage. 

 
Fig 2: RMS-averaged cross-correlation over 100 pairs of independent RFM 

waveforms as a function of mutual time-bandwidth product 

II. EXPECTED CROSS-CORRELATION 
We wish to evaluate the expected value of the squared-

magnitude of the normalized cross-correlation (given by (1)) 
between two independent RFM waveforms 𝑠𝑠1(𝑡𝑡) and 𝑠𝑠2(𝑡𝑡) that 
have constant envelope and continuous phase. For simplicity, 
assume both waveforms have time support on 𝑡𝑡 ∈ [0,𝑇𝑇] , 
though that need not be the case in general. The following 
demonstrates that the primary factor in determining the cross-
correlation between random waveforms is their degree of 
overlapping temporal and spectral support.   

Throughout this section, the zero-lag value of the cross 
correlation 𝑐𝑐1,2(𝜏𝜏) is used as a reasonable over-estimation of the 
average cross-correlation level, which is visually confirmed by 
examining the peaks in Fig. 2. For further justification of this 
approximation, consider the expected power in the cross-
correlation, which from (1) is computed as 
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where E{⋅} is the expectation operator. Rearranging terms and 
passing the expectation through the time-integrations via 
Fubini’s theorem, (2) then becomes 
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Based on the assumption of statistical independence between 
processes 𝑠𝑠1(𝑡𝑡)  and 𝑠𝑠2(𝑡𝑡)  we can invoke multiplicative 
separability of the expected value as 

E �
𝑠𝑠1

∗(𝑡𝑡1 − 𝜏𝜏)𝑠𝑠1(𝑡𝑡2 − 𝜏𝜏) ×
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          𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2),  
where 𝑅𝑅11(𝑡𝑡1, 𝑡𝑡2)  and 𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2)  are the statistical 
autocorrelations of 𝑠𝑠1(𝑡𝑡)  and 𝑠𝑠2(𝑡𝑡),  respectively. Substituting 
this expression into (3) produces 
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where 〈∙〉𝑡𝑡1, 𝑡𝑡2  indicates the two-dimensional inner product 
performed over 𝑡𝑡1  and 𝑡𝑡2 , with (5) expressing the expected 
power of the cross-correlation as the 2-dimensional inner-
product between the statistical autocorrelations for the two 
independent waveforms. Intuitively, this result is greatest when 
there is maximum overlap between the autocorrelation 
mainlobes, which has also be observed in simulation, as 
indicated by Fig. 2. This result implies that, on average, 𝜏𝜏 = 0 
is the lag at which the maximum expected correlation occurs.   

Since s1(t) and s2(t) are statistically independent and have 
finite time extent, the zero-lag value should therefore provide a 
reasonable estimate of the average response for peak cross-
correlation level. Now consider the expected power of the 
normalized cross-correlation at zero lag, denoted as 
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Based on (5), we can rewrite (6) as the inner product of the 
waveform autocorrelations via 

 𝜇𝜇0
2 = 1
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, (7)  

for 𝑡𝑡1, 𝑡𝑡2 ∈ [0, 𝑇𝑇 ] . As shown in Appendix B, the conjugate 
symmetry of the autocorrelation function can simplify (7) as 
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where 𝑅𝑅𝑅𝑅{⋅} indicates the real operator. 
We can further simplify (8) by assuming that the 

instantaneous phase for each RFM waveform is a wide-sense 
stationary (WSS) random process. Under this assumption we 
can state that the autocorrelations can be entirely determined by 
the relative lag between times 𝑡𝑡 and 𝜏𝜏 . Therefore, (8) can be 
rewritten as 

𝜇𝜇0
2 = 2

𝐸𝐸1𝐸𝐸2
𝑅𝑅𝑅𝑅 �� � �

𝑅𝑅11
∗ (𝑡𝑡1 − 𝑡𝑡2) ×

  𝑅𝑅22(𝑡𝑡1 − 𝑡𝑡2) � 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑡𝑡2

0

𝑇𝑇

0 � 
(9)  

 = 2
𝐸𝐸1𝐸𝐸2

𝑅𝑅𝑅𝑅 �� � 𝑅𝑅11
∗ (𝑢𝑢) 𝑅𝑅22(𝑢𝑢) 𝑑𝑑𝑢𝑢 𝑑𝑑𝑑𝑑

𝑑𝑑

0

𝑇𝑇

0 �, 

where the substitution of variables 𝑢𝑢 = 𝑡𝑡1 − 𝑡𝑡2  indicates 
integration over a relative lag parameter, and the variable 𝑑𝑑 =
𝑡𝑡2 has been introduced for clarity. This form permits convenient 
numerical evaluation since the autocorrelations need only be 
computed over a single variable, meaning that, for WSS 
processes, the two-dimensional correlations become one-
dimensional.  

III. EVALUATION OF EXPECTED CROSS-CORRELATION 
To assess the efficacy of the expected cross-correlation level 

in (9) we examine a variety of RFM waveform classes. 
Specifically, we consider first-order PCFM with random coding 
[18,19], pulsed constant-envelope orthogonal frequency 
division multiplexing (CE-OFDM) with random coding [21-
23], random phase-codes [7], pseudo-random optimized FM 
(PRO-FM) with a super-Gaussian spectrum shaping of n = 4 
[24,25], and standard LFM (up-chirp vs. down-chirp) as a 
benchmark. For the FM waveforms considered here, the 
waveform energies are computed as 𝐸𝐸1 = 𝑎𝑎1

2𝑇𝑇  and 𝐸𝐸2 = 𝑎𝑎2
2𝑇𝑇 , 

where 𝑎𝑎1  and 𝑎𝑎2  are the amplitudes of waveforms 1 and 2, 
respectively. 

It was observed in Figs. 1 and 2 that the inverse of the mutual 
time-bandwidth product (TB)12 is a useful and simple estimate 
of the expected cross-correlation between two waveforms. To 
be clear, the mutual time-bandwidth product refers to the 
multiplication of overlapping time and frequency support of the 
two interfering waveforms and corresponds to the common 
degrees-of-freedom between them. Appendix C provides an 
analytical justification for this observation, with each 
autocorrelation approximated as a sinc function as a convenient 
surrogate that can be integrated in closed form. Per Appendix 
C, when the waveforms are perfectly overlapping in frequency, 
this approximation leads to 

 𝜇𝜇0
2 ≈ 1

(𝑇𝑇𝑇𝑇)12
, (10)  

which is exactly the inverse mutual time-bandwidth product.  
In the following, 𝜇𝜇0

2  from (10) is compared with the 
expected cross-correlation level from (9) via Monte Carlo 
simulation, thereby testing the efficacy of the inverse-TB rule-
of-thumb. The evaluation is performed over an ensemble of 
cross-correlations, generated from unique pulse pairs, for each 



class of FM waveforms described above. For completeness, a 
purely numerical estimate is also obtained using the RMS cross-
correlation for each ensemble of waveforms as 

 𝜇𝜇0,𝑟𝑟𝑟𝑟𝑠𝑠
2 ≈ RMS{𝑐𝑐0(0), 𝑐𝑐1(0), … , 𝑐𝑐𝑀𝑀(0)}, (11)  

for 𝑐𝑐𝑟𝑟(0)  the zero-lag value of the mth cross-correlation 
function from the ensemble of M independent assessments.  

A. Modest TB Case 

First consider a modest per-pulse waveform dimensionality of 
TB = 85, which is reasonable for moving target indication 
(MTI) applications. For each waveform class, 10,000 cross-
correlation responses were generated from two unique sets of 
10,000 independent random waveforms. The predicted 
correlation via (9) and RMS average correlation via (11) were 
then determined for each class, as listed in Table I. We observe 
that the numerical RMS cross-correlation values are within 0.7 
dB of their predicted values for all four of the random waveform 
classes. The outlier is the cross-correlation between up/down-
chirp LFM waveforms, in which the numerical response is 
roughly 3-dB better than the prediction based on (9). The LFM 
case (and possibly other monotonic forms of nonlinear FM 
[27]) could be viewed as benchmarks on separability since their 
up/down-chirp versions only have a single crossing of 
instantaneous frequency versus time. For comparison, the 
inverse-TB heuristic from (10) yields −10 log10(𝑇𝑇𝑇𝑇 = 85) ≈
19.3 dB. 

Table I: Zero-lag expected cross-correlation values 
Waveform   

class 
RMS average 

correlation (11) 
Predicted   

correlation (9) 
PCFM −20.83 dB −20.54 dB 

CE-OFDM −21.21 dB −20.53 dB 
Phase codes −20.12 dB −20.98 dB 

PRO-FM −20.73 dB −20.37 dB 
LFM up/down −23.68 dB −20.24 dB 

Figs. 3, 5, 7, 9, and 11 depict the different measures of cross-
correlation assessed for the four random waveform classes 
along with LFM, while Figs. 4, 6, 8, 10 and 12 illustrate the 
corresponding power spectral density (PSD) for each class. 
Noting that the spectral shape for random phase codes is 
determined by chip width, meaning normalized RMS 
bandwidth is fixed for a given TB, the 6-dB RMS bandwidth for 
phase codes is used to set the 6-dB bandwidth for the other 
waveform classes (for fair comparison). All waveforms were 
oversampled by 8 relative to their 6-dB bandwidths to ensure a 
high-fidelity representation. 

Single-pair instantiations of cross-correlation and PSD are 
also included, where we note that the highest sidelobe is 
generally not at zero-lag. However, when the RMS average is 
performed across the set of 10,000 trials, we do indeed find the 
zero-lag to exhibit the highest value across all cases except the 
LFM benchmark. Rather different spectral shapes are also 
observed across the RFM waveform and random phase-code 
classes, though this distinction has no noticeable impact on 

cross-correlation since all cases are restricted to 6-dB 
bandwidth. 

 
Fig 3: Cross-correlation for random 1st order PCFM (TB = 85) compared to 

predictions of expected correlation 

 
Fig 4: PSD for random 1st order PCFM (TB = 85) 

 
Fig 5: Cross-correlation for random CE-OFDM (TB = 85) compared to 

predictions of expected correlation 



 
Fig 6: PSD for random CE-OFDM (TB = 85) 

 
Fig 7: Cross-correlation for random phase codes (TB = 85) compared to 

predictions of expected correlation 

 
Fig 8: PSD for random phase codes (TB = 85) 

 
Fig 9: Cross-correlation for random super-Gaussian PRO-FM (TB = 85) 

compared to predictions of expected correlation 

 
Fig 10: PSD for random super-Gaussian PRO-FM (TB = 85) 

 
Fig 11: Cross-correlation for up/down-chirp LFM (TB = 85) compared to 

predictions of expected correlation 



 
Fig 12: PSD for LFM chirp (TB = 85) 

B. High TB Case 
Now consider a relatively high per-pulse dimensionality of 

TB = 1000, which is consistent with imaging applications like 
synthetic aperture radar (SAR). While phase codes were 
included above for illustration purposes, we henceforth omit 
them since they are known to experience greater transmitter 
distortion due to poor spectral containment [18]. Instead, for 
fair comparison the 6-dB design bandwidth is now set 
according to LFM swept bandwidth, which for TB = 1000 
provides a separability of −30 dB via the inverse-TB heuristic. 

Table II summarizes the simulated cross-correlation values 
for this high TB case. For the RFM waveform classes we again 
observe the level predicted by (9) closely matches the empirical 
results using (11), now deviating by at most 0.4 dB. While the 
measured LFM up/down-chirp cross-correlation is again about 
3-dB better than the prediction (for the same reason as before), 
any differences between the various classes of random FM 
waveforms are now essentially negligible, suggesting that 
prediction via (9) improves as TB increases. 

Table II: Zero-lag expected cross-correlation values 
Waveform   

class 
RMS average 

correlation (11) 
Predicted 

correlation (9) 
PCFM −30.13 dB −29.76 dB 

CE-OFDM −30.10 dB −29.76 dB 
PRO-FM −30.04 dB −29.61 dB 

LFM up/down −33.09 dB −29.49 dB 

Figs. 13-20 illustrate the cross-correlation and PSD plots for 
the different waveform classes. We see that RMS-averaged 
responses (aside from LFM) have a peak at zero-lag despite the 
randomness of where individual cross-correlation peaks may 
occur. Indeed, the higher dimensionality now suggests greater 
roll-off to the general envelope of the single-instantiation cross-
correlations. This response in turn underscores why the mean 
peak would occur at zero-lag. 

 
Fig 13: Cross-correlation for random 1st order PCFM (TB = 1000) compared 

to predictions of expected correlation 

 
Fig 14: PSD for random 1st order PCFM (TB = 1000) 

 
Fig 15: Cross-correlation for random CE-OFDM (TB = 1000) compared to 

predictions of expected correlation 



 
Fig 16: PSD for random CE-OFDM (TB = 1000) 

 
Fig 17: Cross-correlation for random super-Gaussian PRO-FM (TB = 1000) 

compared to predictions of expected correlation 

 
Fig 18: PSD for random super-Gaussian PRO-FM (TB = 1000) 

 
Fig 19: Cross-correlation for up/down-chirp LFM (TB = 1000) compared to 

predictions of expected correlation 

 
Fig 20: PSD for LFM chirp (TB = 1000) 

IV. EXPECTED MULTISTATIC INTERFERENCE FLOOR 
Sections II and III have established the expected degree of 

cross-correlation separability between arbitrary pairs of 
waveforms for a variety of different RFM classes. We now 
extend that analysis to assess the expected multistatic scattering 
interference one would encounter given a single point scatterer. 
For the sake of focusing on waveform separability, we 
explicitly consider a correlation-limited scenario and ignore 
noise, which in reality would simply be superimposed in the 
receiver. 

A. Cross-filtered response 
Consider two unit-amplitude RFM waveforms defined as 

𝑠𝑠1(𝑡𝑡) = exp (𝑗𝑗𝜙𝜙1(𝑡𝑡))  and 𝑠𝑠2(𝑡𝑡) = exp (𝑗𝑗𝜙𝜙2(𝑡𝑡)) , for imaginary 
unit j, having common 6-dB bandwidth B (though the exact 
bandwidth definition is arbitrary), resulting in a Rayleigh range 
resolution proportional to 1/B, and common pulsewidth T. For 
the sake of analysis, let the phase functions 𝜙𝜙1(𝑡𝑡) and 𝜙𝜙2(𝑡𝑡) be 
independent stationary random processes, uniformly distributed 
on (−𝜋𝜋, 𝜋𝜋). Note that this arrangement is an approximation for 



RFM waveforms, but it holds well for zero-symmetric phase 
distributions, which are descriptive of most practical RFM 
implementations. We also remind the reader that RFM 
waveforms possess a continuous phase function, resulting in 
better spectral containment relative to phase-codes. With 
spectral containment in mind, we wish to examine the statistical 
structure of the cross-filtered response, which is likewise a 
random process.  

First, write the cross-filtered response as 
 

𝑐𝑐1,2(𝜏𝜏) = � 𝑠𝑠1
∗(𝑡𝑡 − 𝜏𝜏) 𝑠𝑠2(𝑡𝑡) 𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

. (12)  

To make use of the Central Limit Theorem (CLT), apply the 
truncated sinc expansion (see Appendix D) to (12) so that 

 
𝑐𝑐1,2(𝜏𝜏) ≈ 1

𝑇𝑇 � 𝐩𝐩𝑇𝑇 (𝑡𝑡 − 𝜏𝜏) 𝐬𝐬1
∗ 𝐬𝐬2

𝑇𝑇  𝐩𝐩(𝑡𝑡) 𝑑𝑑𝑡𝑡

∞

−∞

, (13)  

where 𝐩𝐩(𝑡𝑡) = �𝑝𝑝0(𝑡𝑡), 𝑝𝑝1(𝑡𝑡), . . , 𝑝𝑝𝑁𝑁−1(𝑡𝑡)�
𝑻𝑻  is the vector of sinc 

basis functions at time instant t, with 𝑝𝑝𝑛𝑛(𝑡𝑡) = sinc (𝑡𝑡 / 𝑇𝑇s − 𝑛𝑛) for 
discrete integer sample index n and sampling interval 𝑡𝑡s = 1/B. 
The critical sampling interval results in a random sequence of 
statistically independent waveform samples. Vectors  𝐬𝐬1 and  𝐬𝐬2 
(here the sinc-basis weights) are discretized representations of 
waveforms 𝑠𝑠1(𝑡𝑡)  and  𝑠𝑠2(𝑡𝑡),  respectively. Expanding the 
integral results in 

� 𝐩𝐩𝑇𝑇 (𝑡𝑡 − 𝜏𝜏) 𝐬𝐬1
∗ 𝐬𝐬2

𝑇𝑇  𝐩𝐩(𝑡𝑡) 𝑑𝑑𝑡𝑡

∞

−∞

 

(14)  

 

= �

⎩
⎪
⎪
⎨
⎪
⎪
⎧

� 𝑠𝑠1,𝑟𝑟
∗

𝑁𝑁−1

𝑟𝑟=0
sinc �

𝑡𝑡 − 𝜏𝜏
𝛿𝛿

− 𝑟𝑟� ×

⎝
⎜
⎜
⎛

� 𝑠𝑠2,𝑛𝑛

𝑁𝑁−1

𝑛𝑛=0
sinc �

𝑡𝑡
𝛿𝛿

− 𝑛𝑛�
⎠
⎟
⎟
⎞

⎭
⎪
⎪
⎬
⎪
⎪
⎫

𝑑𝑑𝑡𝑡

∞

−∞

 

 
= � � 𝑠𝑠1,𝑟𝑟

∗  𝑠𝑠2,𝑛𝑛 �
⎣
⎢
⎢
⎡sinc �

𝑡𝑡 − 𝜏𝜏
𝛿𝛿

− 𝑟𝑟� ×

sinc �
𝑡𝑡 − 𝜏𝜏

𝛿𝛿
− 𝑛𝑛� ⎦

⎥
⎥
⎤

𝑑𝑑𝑡𝑡

∞

−∞

𝑁𝑁−1

𝑛𝑛=0

𝑁𝑁−1

𝑟𝑟=0
 

 
= � � s1,𝑟𝑟

∗ 𝑠𝑠2,𝑛𝑛 sinc
𝑁𝑁−1

𝑛𝑛=0
�(𝑛𝑛 − 𝑟𝑟) − 𝜏𝜏

𝛿𝛿�

𝑁𝑁−1

𝑟𝑟=0
 

 
= � � s1,𝑟𝑟

∗  𝑠𝑠2,𝑛𝑛𝑃𝑃𝑟𝑟𝑛𝑛(−𝜏𝜏)
𝑁𝑁−1

𝑛𝑛=0

𝑁𝑁−1

𝑟𝑟=0
 

 = 𝐬𝐬1
𝐻𝐻𝐏𝐏(−𝜏𝜏) 𝐬𝐬2, 

which expresses the cross-correlation as the generalized inner 
product between the waveform basis vectors evaluated at time 
𝜏𝜏  via the sinc basis matrix 𝐏𝐏(−𝜏𝜏).  

Assuming the waveforms are bandlimited (clearly an 
approximation for a time-limited pulse), we can space the basis 
functions in 𝐏𝐏(−𝜏𝜏) by 𝛿𝛿 = 1/𝑇𝑇, which is equivalent to critical 
sampling. Under this assumption, the elements in vectors 𝐬𝐬1 and 

𝐬𝐬2 are well-approximated as independent and identically 
distributed (IID).  

Define the sinc-interpolated version of 𝐬𝐬2  as 𝐬𝐬2̃(𝜏𝜏) =
𝐏𝐏(−𝜏𝜏) 𝐬𝐬2 . Since we have assumed that the waveforms are 
bandlimited, the continuous time signal 𝑠𝑠2(𝑡𝑡)  may be 
completely reconstructed from the samples in 𝐬𝐬2 . Thus, the 
matrix 𝐏𝐏(−𝜏𝜏) determines the inter-element correlation of 𝐬𝐬2̃(𝜏𝜏) 
for any arbitrary delay 𝜏𝜏 . The mean of 𝐬𝐬2̃(𝜏𝜏) is the zero-vector, 
as shown shortly in (16), while the covariance is 
E�𝐬𝐬2̃(𝜏𝜏) 𝐬𝐬2̃

𝐻𝐻(𝜏𝜏)� = 𝐏𝐏(−𝜏𝜏) E�𝐬𝐬2 𝐬𝐬2
𝐻𝐻�𝐏𝐏𝐻𝐻(−𝜏𝜏) ≈ 𝐏𝐏(−𝜏𝜏)𝐏𝐏𝐻𝐻(−𝜏𝜏), 

where the final approximation comes from the assumption that 
the waveforms are bandlimited and critically sampled (with IID 
samples) resulting in E�𝐬𝐬2 𝐬𝐬2

𝐻𝐻� ≈ 𝐈𝐈𝑁𝑁 , for 𝐈𝐈𝑁𝑁  the N×N identity 
matrix. 

In the case where 𝜏𝜏/𝛿𝛿 = 𝑖𝑖, for i an integer, 𝐬𝐬2̃(𝜏𝜏) is an IID 
random vector, just like 𝐬𝐬2. When |i| is sufficiently smaller than 
𝑇𝑇 /𝛿𝛿 , the inner product 𝐬𝐬1

𝐻𝐻𝐬𝐬2̃(𝜏𝜏)  is asymptotically Normally 
distributed by the CLT. When |i| is near 𝑇𝑇 /𝛿𝛿, corresponding to 
few overlapping samples in the inner product 𝐬𝐬1

𝐻𝐻𝐬𝐬2̃(𝜏𝜏) , the 
underlying distribution is less predictable, though the low 
power for such lags suggests that these cases are insignificant 
compared to those with greater overlap between the waveforms. 
For the case where 𝜏𝜏/𝛿𝛿 is not an integer, �̃�𝐬2(𝜏𝜏) can be viewed as 
a straddled interpolation of 𝐬𝐬2 , thereby introducing possible 
deviation from the CLT. 

For worst-case straddling, set 𝜏𝜏/𝛿𝛿 = 𝑖𝑖/2 . In this case, 
simulation has confirmed that the samples of 𝐬𝐬2̃(𝜏𝜏)  are 
approximately complex-normal random variables. A more 
rigorous proof can be made via the Lindberg CLT [27], though 
empirical evidence was sufficient for our purpose. Thus, we can 
safely assume that the inner product 𝐬𝐬1

𝐻𝐻𝐬𝐬2̃(𝜏𝜏)  is Normally 
distributed by the CLT. By this argument, it can be inferred that 
𝑐𝑐1,2(𝜏𝜏) is normally distributed for all 𝜏𝜏  sufficiently away from 
the pulse edges ±𝑇𝑇 . 

Having established that the distribution of the cross-filtered 
response is asymptotically Normal, we are able to characterize 
this process fully by computing its first and second moments. 
The mean is 

E�𝑐𝑐1,2(𝜏𝜏)� = E
⎩⎪
⎨
⎪⎧

� 𝑠𝑠1
∗(𝑡𝑡 − 𝜏𝜏) 𝑠𝑠2(𝑡𝑡) 𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇 ⎭⎪
⎬
⎪⎫ 

(15)  
 

= � E�𝑠𝑠1
∗(𝑡𝑡 − 𝜏𝜏)�E{𝑠𝑠2(𝑡𝑡)}𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

, 

where we have invoked the multiplicative separability of 
independent random processes under the expectation operator. 
The waveforms’ expected values may be computed through use 
of the Law of The Unconscious Statistician (LOTUS) [29] via 

E�𝑅𝑅𝑗𝑗𝜙𝜙(𝑡𝑡)� = 1
2𝜋𝜋 � 𝑅𝑅𝑗𝑗𝜙𝜙(𝑡𝑡)𝑑𝑑𝜙𝜙(𝑡𝑡)

𝜋𝜋

−𝜋𝜋

 (16)  



 
= 1

2𝜋𝜋 ��cos�𝜙𝜙(𝑡𝑡)� + 𝑗𝑗 sin�𝜙𝜙(𝑡𝑡)��𝑑𝑑𝜙𝜙(𝑡𝑡)

𝜋𝜋

−𝜋𝜋

 

 = 1
2𝜋𝜋 �sin�𝜙𝜙(𝑡𝑡)� − 𝑗𝑗 cos�𝜙𝜙(𝑡𝑡)��−𝜋𝜋

𝜋𝜋  

 = 0, 
showing that an RFM waveform with a uniformly distributed 
phase process (distributed on [−𝜋𝜋, +𝜋𝜋] ) is zero-mean. This 
result can be substituted into (15), yielding 

 E�𝑐𝑐1,2(𝜏𝜏)�= 0. (17)  
Next, we compute the variance as 
 
E��𝑐𝑐1,2(𝜏𝜏)�

2
� = E

⎩⎪
⎨
⎪⎧

||
|
|
|

1
 √𝐸𝐸1𝐸𝐸2

� 𝑠𝑠1
∗(𝑡𝑡 − 𝜏𝜏)𝑠𝑠2(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇 ||
|
|
|2

⎭⎪
⎬
⎪⎫ . (18)  

Per Section II, the variance of the cross-filtering process is 
equivalent to the mean-square power of the cross-correlation. 
Consequently, the variance can be approximated as  

 E��𝑐𝑐1,2(𝜏𝜏)�
2
� ≈ 1

𝑇𝑇𝑇𝑇
 , (19)  

which is derived in Appendix C. 
 
B. Generalization to multiple emitters 

Now consider the effects of cross-filtered interference 
between an ensemble of K distributed, independently operating 
emitters, with each also possessing a collocated receiver. Each 
monostatic transmit/receive pair may have a completely distinct 
field of regard relative to the other K − 1 pairs and the spatial 
arrangement of the individual transmit/receive pairs is arbitrary. 
A single point scatterer is considered, with a graphical depiction 
illustrated in Fig. 21 for K = 3. For the convenience of ignoring 
extraneous delay terms, assume the transmitters are 
synchronized and emit independent waveforms that are 
temporally and spectrally coincident, having the same time-
bandwidth product. Consequently, the reflected signal captured 
at the kth receiver is the superposition of the K emitted 
waveforms reflected by the point scatterer, which when 
neglecting noise can be written simply as 

 𝑦𝑦𝑘𝑘(𝑡𝑡) = � 𝛼𝛼𝑘𝑘,𝑙𝑙𝑠𝑠𝑙𝑙�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
 (20)  

for 𝑠𝑠𝑙𝑙(𝑡𝑡) the waveform emitted by the 𝑙𝑙th transmitter, 𝜏𝜏𝑘𝑘,𝑙𝑙 the 
propagation delay between the 𝑙𝑙th transmitter and kth receiver, 
and 𝛼𝛼𝑙𝑙,𝑘𝑘  the complex scattering for the 𝑙𝑙 th and 𝑘𝑘 th transmit/ 
receive pair accounting for differing propagation loss and beam 
patterns. Note that the assumption of mutual synchronization 
between the transmitters allows the consideration of a single 
relative delay term 𝜏𝜏𝑘𝑘,𝑙𝑙 per transmitter/receiver pair but does not 
affect the generality of the results. Applying the matched filter 
to (20) according to the kth radar’s transmit waveform then 
yields 

𝑟𝑟𝑘𝑘(𝜏𝜏)  = 1
𝑇𝑇 � 𝑠𝑠𝑘𝑘

∗(𝑡𝑡 − 𝜏𝜏)
� � 𝛼𝛼𝑘𝑘,𝑙𝑙𝑠𝑠𝑙𝑙�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�

𝐾𝐾−1

𝑙𝑙=0 �
𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

 

(21)   = � 𝛼𝛼𝑘𝑘,𝑙𝑙
1
𝑇𝑇 � 𝑠𝑠𝑘𝑘

∗(𝑡𝑡 − 𝜏𝜏)𝑠𝑠𝑙𝑙�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

𝐾𝐾−1

𝑙𝑙=0
 

 = 𝛼𝛼𝑘𝑘,𝑘𝑘𝑐𝑐𝑘𝑘,𝑘𝑘�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑘𝑘� + � 𝛼𝛼𝑘𝑘,𝑙𝑙𝑐𝑐𝑘𝑘,𝑙𝑙�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

 

 = 𝛼𝛼𝑘𝑘,𝑘𝑘𝑐𝑐𝑘𝑘,𝑘𝑘�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑘𝑘� + 𝑧𝑧𝑘𝑘(𝜏𝜏),  
where 𝑐𝑐𝑘𝑘,𝑙𝑙(𝜏𝜏) is simply the generalization of (12) and 𝑐𝑐𝑘𝑘,𝑘𝑘(𝜏𝜏) is 
therefore the autocorrelation function of the 𝑘𝑘th waveform. The 
final term 𝑧𝑧𝑘𝑘(𝜏𝜏) is comprised of the overall mutual interference 
induced by scattering from the other (K−1) emitters. 

 
Fig. 21: Arbitrary multistatic geometry and a single point scatterer 

To assess the impact of superimposed scattering from 
multiple emitters, we can repeat the previous mean/variance 
evaluation for 𝑧𝑧𝑘𝑘(𝜏𝜏) in (21). First, the mean is 

E{𝑧𝑧𝑘𝑘(𝜏𝜏)}  = E

⎩⎪
⎨
⎪⎧

� 𝛼𝛼𝑘𝑘,𝑙𝑙𝑐𝑐𝑘𝑘,𝑙𝑙�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘 ⎭⎪

⎬
⎪⎫

 

(22)  
 = � 𝛼𝛼𝑘𝑘,𝑙𝑙E�𝑐𝑐𝑘𝑘,𝑙𝑙�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙��

𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

 

 = 0, 
where the final result comes from (17), implying that the mean 
of the multistatic interference is zero regardless of the number 
of independent emitters. Likewise, the variance is 

E�|𝑧𝑧𝑘𝑘(𝜏𝜏)|2�  = E

⎩⎪
⎨
⎪⎧

||
|
|
|

� 𝛼𝛼𝑘𝑘,𝑙𝑙𝑐𝑐𝑘𝑘,𝑙𝑙(𝜏𝜏 − 𝜏𝜏𝑙𝑙)
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘 ||

|
|
|2

⎭⎪
⎬
⎪⎫

 (23)  



 = E

⎩⎪
⎪
⎪
⎨
⎪
⎪
⎪⎧

⎝
⎜
⎜
⎛

� 𝛼𝛼𝑘𝑘,𝑙𝑙𝑐𝑐𝑘𝑘,𝑙𝑙(𝜏𝜏 − 𝜏𝜏𝑙𝑙)
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘 ⎠

⎟
⎟
⎞

×

⎝
⎜
⎜
⎛

� 𝛼𝛼𝑘𝑘,𝑟𝑟
∗ 𝑐𝑐𝑘𝑘,𝑟𝑟

∗ (𝜏𝜏 − 𝜏𝜏𝑟𝑟)
𝐾𝐾−1

𝑟𝑟=0
𝑟𝑟≠𝑘𝑘 ⎠

⎟
⎟
⎞∗

⎭⎪
⎪
⎪
⎬
⎪
⎪
⎪⎫

 

 = � � 𝛼𝛼𝑘𝑘,𝑙𝑙 𝛼𝛼𝑘𝑘,𝑟𝑟
∗ 𝐸𝐸 �

𝑐𝑐𝑘𝑘,𝑙𝑙(𝜏𝜏 − 𝜏𝜏𝑙𝑙) ×  
𝑐𝑐𝑘𝑘,𝑟𝑟

∗ (𝜏𝜏 − 𝜏𝜏𝑟𝑟) �

𝐾𝐾−1

𝑟𝑟=0
𝑟𝑟≠𝑘𝑘

𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

. 

Due to statistical independence of the waveforms, we can assert 
via Appendix C that 

 E�𝑐𝑐𝑘𝑘,𝑙𝑙(𝜏𝜏 − 𝜏𝜏𝑙𝑙) 𝑐𝑐𝑘𝑘,𝑟𝑟
∗ (𝜏𝜏 − 𝜏𝜏𝑟𝑟)� ≈ �

(𝑇𝑇𝑇𝑇)−1 , 𝑟𝑟 = 𝑙𝑙
0, else . (24)  

Substituting (24) into (23) therefore results in 
 

E�|𝑧𝑧𝑘𝑘(𝜏𝜏)|2� = 1
𝑇𝑇𝑇𝑇 ��𝛼𝛼𝑘𝑘,𝑙𝑙�

2 
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

, (25)  

which provides the expected multistatic interference floor due 
to a single point scatterer when multiple emitters have perfectly 
overlapped spectra and operate concurrently. 

A specific case of interest is a collocated multiple-input 
multiple-output (MIMO) framework, where 𝐾𝐾  emitters operate 
independently from essentially the same location (e.g. 
subarrays of a larger array) and have the same field of regard. 
Under this arrangement we can normalize out the different 
scattering by setting 𝛼𝛼𝑘𝑘𝑙𝑙 = 1 ∀ 𝑙𝑙 ≠ 𝑘𝑘 so that (25) becomes 

 𝐸𝐸�|𝑧𝑧𝑘𝑘(𝜏𝜏)|2� = 𝐾𝐾 − 1
𝑇𝑇𝑇𝑇

, (26)  

which can be used as a general guideline for mutual interference 
of multi-emitter systems. 

 
C. Extension to waveform-agile operation 

Finally, since RFM waveforms are intended for use in a non-
repeating manner to realize their high-dimensional benefits, we 
further extend the above analysis to now account for waveform 
agility as well. Start by letting each of the K radars emit a 
sequence of Q independent RFM waveforms, again assuming 
the transmitters are synchronized (for convenience of analysis) 
and have the same time-bandwidth product. We likewise again 
assume a simple point scatterer and neglect noise.  

We can therefore extend (20) as 

  𝑦𝑦𝑘𝑘,𝑝𝑝(𝑡𝑡) = � 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑝𝑝𝑠𝑠𝑙𝑙,𝑝𝑝�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
 (27)  

for q = 1, 2, …, Q where 𝑠𝑠𝑙𝑙,𝑞𝑞(𝑡𝑡) is the qth pulsed waveform 
emitted by the 𝑙𝑙th transmitter and the scattering 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞 is made 
dependent on q to account for Doppler. Like (21), applying the 
matched filter to the qth pulse response for the kth radar yields 

𝑟𝑟𝑘𝑘,𝑞𝑞(𝜏𝜏)  = 1
𝑇𝑇 � 𝑠𝑠𝑘𝑘,𝑞𝑞

∗ (𝑡𝑡 − 𝜏𝜏)
�� 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞𝑠𝑠𝑙𝑙,𝑞𝑞�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�

𝐾𝐾−1

𝑙𝑙=0 �
𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

 (28)  

 = � 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞
1
𝑇𝑇 � 𝑠𝑠𝑘𝑘,𝑞𝑞

∗ (𝑡𝑡 − 𝜏𝜏)𝑠𝑠𝑙𝑙,𝑞𝑞�𝑡𝑡 − 𝜏𝜏𝑘𝑘,𝑙𝑙�𝑑𝑑𝑡𝑡

𝑇𝑇

−𝑇𝑇

𝐾𝐾−1

𝑙𝑙=0
 

 = 𝛼𝛼𝑘𝑘,𝑘𝑘,𝑞𝑞𝑐𝑐𝑘𝑘,𝑘𝑘,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑘𝑘� + � 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞𝑐𝑐𝑘𝑘,𝑙𝑙,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

 

 = 𝛼𝛼𝑘𝑘,𝑘𝑘,𝑞𝑞𝑐𝑐𝑘𝑘,𝑘𝑘,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑘𝑘� + 𝑧𝑧𝑘𝑘,𝑞𝑞(𝜏𝜏),  
where we have also neglected range-walking so that all the 𝜏𝜏𝑘𝑘,𝑙𝑙 
terms remain constant across slow-time (for simplicity).  Once 
again, the final term 𝑧𝑧𝑘𝑘,𝑞𝑞(𝜏𝜏)  is comprised of the mutual 
interference induced by scattering from the other (K−1) 
emitters, albeit now across the coherent processing interval 
(CPI) of Q pulses. 

The next processing stage would generally involve a Fourier 
transform across slow-time to provide discrimination in 
Doppler/cross-range. Doing so also realizes a coherent gain on 
the 𝛼𝛼𝑘𝑘,𝑘𝑘,𝑞𝑞𝑐𝑐𝑘𝑘,𝑘𝑘,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑘𝑘�  term in (28) relative to components 
that are not coherent across slow-time (e.g. mutual 
interference). Let the normalized discrete Fourier transform 
matrix be denoted as (1/Q) D, which when applied would 
produce the vector  

𝐳𝐳�̃�𝑘(𝜏𝜏)  = 1
𝑄𝑄

𝐃𝐃�𝑧𝑧𝑘𝑘,0(𝜏𝜏)  𝑧𝑧𝑘𝑘,1(𝜏𝜏)  ⋯  𝑧𝑧𝑘𝑘,𝑄𝑄−1(𝜏𝜏)�
𝑇𝑇  (29)  

for the mutual interference relative to the kth radar. Since this 
term is not coherent, we can examine the nth element of (29) 
for any arbitrary Doppler frequency via application of 𝐝𝐝𝑛𝑛 (the 
nth row vector of D). This response can be expressed as 

𝑧𝑧�̃�𝑘,𝑛𝑛(𝜏𝜏)  = 1
𝑄𝑄

𝐝𝐝𝑛𝑛�𝑧𝑧𝑘𝑘,0(𝜏𝜏)  𝑧𝑧𝑘𝑘,1(𝜏𝜏)  ⋯  𝑧𝑧𝑘𝑘,𝑄𝑄−1(𝜏𝜏)�
𝑇𝑇  

(30)  
 = 1

𝑄𝑄 � 𝑑𝑑𝑛𝑛,𝑞𝑞 � 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞𝑐𝑐𝑘𝑘,𝑙𝑙,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙�
𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

𝑄𝑄−1

𝑝𝑝=0
 

 = 1
𝑄𝑄 � � �̃�𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞𝑐𝑐𝑘𝑘,𝑙𝑙,𝑞𝑞�𝜏𝜏 − 𝜏𝜏𝑘𝑘,𝑙𝑙�

𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞=0
, 

where we have simply subsumed the (here arbitrary) Fourier 
coefficient into the scattering term as �̃�𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞 = 𝑑𝑑𝑛𝑛,𝑞𝑞 𝛼𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞. 

It follows from (22) that taking the expectation of (30) 
likewise realizes a mean of zero. The variance, which 
established the expected power level of the interference floor, 
is computed as 

E��𝑧𝑧�̃�𝑘,𝑛𝑛(𝜏𝜏)�
2
�  = E

⎩⎪
⎨
⎪⎧

||
|
|
|
1
𝑄𝑄 � � �̃�𝛼𝑘𝑘,𝑙𝑙,𝑞𝑞𝑐𝑐𝑘𝑘,𝑙𝑙,𝑞𝑞(𝜏𝜏)

𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞=0 ||
|
|
|2

⎭⎪
⎬
⎪⎫

 

(31)  

 = 1
𝑄𝑄2 E

⎩
⎪
⎨
⎪
⎧

⎝
⎜
⎜
⎜
⎛

� � �̃�𝛼𝑘𝑘,𝑙𝑙1,𝑞𝑞1
𝑐𝑐𝑘𝑘,𝑙𝑙1,𝑞𝑞1

(𝜏𝜏)
𝐾𝐾−1

𝑙𝑙1=0
𝑙𝑙1≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞1=0
⎠
⎟
⎟
⎟
⎞
 



             ×

⎝
⎜
⎜
⎜
⎛

� � �̃�𝛼𝑘𝑘,𝑙𝑙2,𝑞𝑞2
𝑐𝑐𝑘𝑘,𝑙𝑙2,𝑞𝑞2

(𝜏𝜏)
𝐾𝐾−1

𝑙𝑙2=0
𝑙𝑙2≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞2=0
⎠
⎟
⎟
⎟
⎞∗

⎭
⎪
⎬
⎪
⎫

 

 = 1
𝑄𝑄2 � � � ���̃�𝛼𝑘𝑘,𝑙𝑙1,𝑞𝑞1

�̃�𝛼𝑘𝑘,𝑙𝑙2,𝑞𝑞2
×

𝐾𝐾−1

𝑙𝑙2=0
𝑙𝑙2≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞2=0

𝐾𝐾−1

𝑙𝑙1=0
𝑙𝑙1≠𝑘𝑘

𝑄𝑄−1

𝑞𝑞1=0
 

                      E�𝑐𝑐𝑘𝑘,𝑙𝑙1,𝑞𝑞1
(𝜏𝜏)𝑐𝑐𝑘𝑘,𝑙𝑙2,𝑞𝑞2

∗ (𝜏𝜏)��. 

Because of the independence of waveforms across emitters, the 
variance can be simplified via (24) since a non-zero result is 
obtained only when 𝑙𝑙1 = 𝑙𝑙2 and 𝑞𝑞1 = 𝑞𝑞2, thereby yielding 

 
𝐸𝐸��𝑧𝑧�̃�𝑘,𝑛𝑛(𝜏𝜏)�

2
� = 1

𝑄𝑄𝑇𝑇𝑇𝑇 ��𝛼𝛼𝑘𝑘,𝑙𝑙�
2 

𝐾𝐾−1

𝑙𝑙=0
𝑙𝑙≠𝑘𝑘

, (32)  

with 𝑙𝑙1 and 𝑙𝑙2 now replaced with 𝑙𝑙 for simplicity. Here we have 
assumed that the scatterer only changes phase over the CPI for 
each transmitter/receiver pair. 

The collocated MIMO framework in Sect. IV.B set 𝛼𝛼𝑙𝑙𝑘𝑘 =
1 ∀ 𝑙𝑙 ≠ 𝑘𝑘, subsequently producing the separability guideline in 
(26). Doing likewise for (32) realizes 

 𝐸𝐸��𝑧𝑧�̃�𝑘,𝑛𝑛(𝜏𝜏)�
2
� = 𝐾𝐾 − 1

𝑄𝑄𝑇𝑇𝑇𝑇
,  (33)  

which in turn provides a general guideline for the mutual 
interference in each Doppler bin for K independent emitters 
using waveform agility. 

A simulated Monte Carlo example for this hypothesized 
multistatic / waveform-agile arrangement is shown in Figs. 22 
and 23. Here, RMS cross-correlation responses are generated 
for different numbers of emitters K and pulses 𝑄𝑄 when using 
100 waveforms having TB = 1000. These numerical results 
clearly depict agreement with (26) and (33). 

 
Fig 22: Expected RMS cross-correlation for 𝑄𝑄 = 1 RFM waveform for each 

of K different emitters, which agrees with (31) 

 
Fig 23: Expected RMS cross-correlation for K = 2 RFM emitters after Doppler 

processing across 𝑄𝑄 independent waveforms, which agrees with (38) 

V. EXPECTED MAXIMUM CORRELATION 
Having now examined the expected power for the zero-lag 

sample of the cross-correlation of two RFM waveforms 
possessing similar spectral and temporal support, we turn our 
attention to the worst-case correlation. At first glance, it would 
seem that the peak correlation value should occur at zero-lag, 
due to this value possessing the highest possible variance (a 
function of waveform overlap). Despite this, the stochastic 
nature of RFM waveforms suggests that the maximum 
correlation value can occur for any time lag. We therefore seek 
to justify examination of the correlation function at zero-lag. 

Similar to previous analyses, consider the normalized cross-
correlation 𝑐𝑐1,2(𝜏𝜏) between two independent RFM waveforms  
𝑠𝑠1(𝑡𝑡) and 𝑠𝑠2(𝑡𝑡). Then define the maximum correlation as 

 𝑀𝑀 = max
𝜏𝜏 �|𝑐𝑐1,2(𝜏𝜏)|�,  (34)  

noting that the cross-correlation function will be weighted by a 
triangular window corresponding to the convolution between 
the rectangular pulse-shapes of  𝑠𝑠1(𝑡𝑡) and 𝑠𝑠2(𝑡𝑡) (assuming FM 
waveforms); meaning we can safely assume that the maximum 
correlation will most likely occur at 𝜏𝜏 = 0  on average 
(assuming the correlating signals have equal time support).  
Given that 𝑐𝑐1,2(0) is a random variable, we can approximate 𝑀𝑀  
as the maximum value across an ensemble of K realizations of 
the correlation function, evaluated at zero-lag, or 

 𝑀𝑀 ≈ max{|𝑐𝑐1(0)|, |𝑐𝑐2(0)|, … , |𝑐𝑐𝐾𝐾(0)|}, (35)  
for 𝑐𝑐𝑘𝑘(0)  the kth correlation function at zero lag. Thus, 
estimation of M requires derivation of its PDF as K→∞, which 
can be seen as an extension of the central limit theory.  The 
maximum value of random variables is the last order statistic, 
the study of which is described by extreme value theory (EVT) 
[29]. To apply the techniques of EVT, write the kth correlation 
function as 

𝑐𝑐𝑘𝑘(0)  = � 𝑠𝑠1,𝑘𝑘
∗ (𝑡𝑡 − 0) 𝑠𝑠2,𝑘𝑘(𝑡𝑡) 𝑑𝑑𝑡𝑡

∞

−∞

, (36)  



where 𝑠𝑠1,𝑘𝑘(𝑡𝑡) and 𝑠𝑠2,𝑘𝑘(𝑡𝑡) are the kth realizations of waveform 1 
and 2 respectively, which contribute to the K correlation 
functions over which M is estimated in (35). As shown in 
Section IV-A, 𝑐𝑐𝑘𝑘(𝜏𝜏) is a Gaussian random process, which we 
will approximate as memoryless and stationary.  Treating the 
set |𝑐𝑐1(0)|, |𝑐𝑐2(0)|, … , |𝑐𝑐𝐾𝐾(0)|  as IID Gaussian random 
variables, a claim established and verified in Section IV.A. we 
can assert that the distribution of |𝑐𝑐𝑘𝑘(𝜏𝜏)| is Rayleigh.  

The maximum value of a set of IID random variables is 
statistically described by the extreme value distribution, which 
contains a family of well-known distributions such as Gumbel, 
Frechet, and Weibull. Of particular interest is the Gumbel 
distribution that describes the maximum of random variables 
whose individual PDFs are of the form [29] 

 𝑃𝑃 (𝑋𝑋 = 𝑥𝑥) = 𝑎𝑎𝑓𝑓 ′(𝑥𝑥)𝑅𝑅𝑓𝑓(𝑥𝑥), (37)  
where f (x) is an arbitrary continuous transformation on random 
variable X, 𝑓𝑓′(𝑥𝑥) is the derivative of f (x) with respect to x, and 
a is a scalar set to ensure P(X) integrates to unity. Included 
among this class of distributions is the Rayleigh distribution. 
Thus, let 𝑓𝑓(𝑥𝑥) = − 𝑥𝑥2

2𝜎𝜎2
 for parameter 𝜎𝜎2  and 𝑎𝑎 =  −1.  Then 

the Rayleigh distribution is written as 
 

𝑃𝑃 (𝑋𝑋 = 𝑥𝑥) = 𝑥𝑥
𝜎𝜎2 𝑅𝑅− 𝑥𝑥2

2𝜎𝜎2. (38)  

Given the form of the Rayleigh distribution, and since M is 
defined as the maximum over a set of Rayleigh random 
variables, we can assert that M is characterized by the Gumbel 
distribution. For an extreme-valued random variable, the 
Gumbel distribution is given as 

 
𝑃𝑃 (𝑋𝑋 = 𝑥𝑥) = 1

𝛽𝛽
𝑅𝑅

−𝑥𝑥−𝜇𝜇
𝛽𝛽 𝑅𝑅−𝑅𝑅

−𝑥𝑥−𝜇𝜇
𝛽𝛽 , (39)  

for real scale parameter 𝛽𝛽  and real location parameter 𝜇𝜇. We 
wish to estimate 𝛽𝛽  and 𝜇𝜇  by maximizing the likelihood 
function. Consider a K-length IID snapshot vector of 
realizations of extreme value index X; that is 𝐗𝐗 = 𝐱𝐱 =
�𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾−1�

𝑇𝑇 . The likelihood function for this random 
vector 𝑃𝑃 (𝐗𝐗 = 𝐱𝐱) is given by  

 
𝑃𝑃 (𝐗𝐗 = 𝐱𝐱) = �

1
𝛽𝛽

𝑅𝑅
−𝑥𝑥𝑘𝑘−𝜇𝜇

𝛽𝛽 𝑅𝑅−𝑅𝑅
−𝑥𝑥𝑘𝑘−𝜇𝜇

𝛽𝛽
𝐾𝐾−1

𝑘𝑘=0
. (40)  

Maximization of (40) with respect to 𝜇𝜇  and 𝛽𝛽  results in a 
system of nonlinear equations that must be solved numerically, 
as described in [30]. To realize a closed-form solution to the 
maximization of (40) that is purely dependent on waveform 
parameters, we can consider a second-order Taylor expansion 
of the likelihood function, which is posed and solved in 
Appendix E. An appropriate point for the Taylor expansion is 
found via a log-domain regression on Monte Carlo data. From 
these procedures, maximum-likelihood estimates for the scale 
and location parameters, denoted as 𝜇𝜇M̂L and 𝛽𝛽M̂L, respectively, 
are found to be 

𝜇𝜇M̂L ≈ 𝜇𝜇0 +
−𝑎𝑎0�𝑏𝑏1 + 2𝑏𝑏0

2� + 𝑏𝑏0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)

�𝑎𝑎1 + 2𝑎𝑎0
2��𝑏𝑏1 + 2𝑏𝑏0

2� − (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)2
, (41)  

and  

𝛽𝛽M̂L ≈ 𝛽𝛽0 +
−𝑏𝑏0�𝑎𝑎1 + 2𝑎𝑎0

2� + 𝑎𝑎0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)

�𝑎𝑎1 + 2𝑎𝑎0
2��𝑏𝑏1 + 2𝑏𝑏0

2� − (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)2
, (42)  

where the constants 𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, 𝑏𝑏0, and 𝑏𝑏1 are given in Appendix 
E by (E.11a) through (E.11e), and the expansion points 𝜇𝜇0 and 
𝛽𝛽0 are  

 
𝜇𝜇0 = 10

−𝑐𝑐1 log(𝑇𝑇𝑇𝑇)+𝑐𝑐2
20 − 𝛾𝛾𝛽𝛽0, (43)  

and 
 

𝛽𝛽0 = �
𝜋𝜋2

6
10

−𝑐𝑐3 log(𝑇𝑇𝑇𝑇)+𝑐𝑐4
10

�

1
2
, (44)  

with the corresponding regression constants 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, and 𝑐𝑐4 in 
Table IV in Appendix E. 

The utility of (41) and (42) becomes apparent when one 
considers that no data needs to be generated to obtain these 
estimates. Consequently, the maximum correlation value can be 
predicted for a given time-bandwidth product via the expected 
value and variance of a Gumbel random variable, which are 
given by 

 𝐸𝐸{𝑀𝑀} ≈ 𝜇𝜇M̂L + 𝛾𝛾𝛽𝛽M̂L, (45)  
and  

 
𝑉𝑉𝑎𝑎𝑟𝑟{𝑀𝑀} ≈ 𝜋𝜋2

6
𝛽𝛽M̂L

 2 . (46)    

Using (41) through (44), we can determine a confidence 
interval for the approximate maximum-likelihood estimates for 
the maximum cross-correlation value. Using numerical 
integration (i.e. a Riemann sum), the 95% confidence interval 
for the maximum correlation value is  

𝑀𝑀 ∈ 𝜇𝜇M̂L + �𝛾𝛾𝛽𝛽M̂L − 2.98𝛽𝛽M̂L , 𝛾𝛾𝛽𝛽M̂L + 2.98𝛽𝛽M̂L�. (47)    
This interval indicates, with 95% certainty, that the true value 
of the maximum cross-correlation will lie within 2.32 standard 
deviations of the approximate maximum-likelihood estimate 
defined by (45). 

VI. SIMULATION FOR MAXIMUM CROSS-CORRELATION 
To assess the derived estimates for the maximum cross-

correlation, consider a per-pulse dimensionality of TB = 1000. 
It should be noted that the following analysis has also been 
conducted for the TB = 85 case discussed in Section III, but the 
results are omitted because they were not meaningfully 
different than for TB = 1000 below, apart from the ~10.7 dB 
increase in the overall correlation level. Similar to Section III, 
10,000 cross-correlation responses are generated from the same 
20,000 independent waveforms used for the results in Section 
III-B. These responses are compared with the maximum-
likelihood estimate derived from the Taylor expansion 
(equations (41) and (42)), which is here computed to be -22.154 
dB as well as the average maximum magnitude observed over 
the ensemble of responses. The results of these comparisons are 
shown in Figs 24-27. Table III also lists the observed ensemble-
averaged, maximum correlation values, compared with the 
Taylor-expansion-derived estimate.  



For RFM waveforms we see that the ensemble-average 
maximum values listed in Table III are all within a half dB of 
the Taylor-expanded estimates, suggesting that although the 
Taylor-expanded solution provides an approximately 
statistically-optimal estimate for maximum cross-correlation, 
the regression model given by (43) should generally provide an 
adequate substitution. We also note that LFM, being an entirely 
deterministic waveform, does not experience outliers in the way 
that the RFM waveforms do. Consequently, the LFM cross-
correlation peak is more than 8 dB lower than the maxima 
observed for random waveforms. 

Table III: Ensemble-averaged maximum correlation 
Waveform Average Max 

PCFM −22.08 dB 
CE-OFDM −21.97 dB 
PRO-FM −21.86 dB 

LFM −30.46 dB 

 
Fig 24: Random 1st-order PCFM cross-correlation (TB = 1000) compared to 

metrics for worst-case correlation 

 
Fig 25: Random CE-OFDM cross-correlation (TB = 1000) compared to 

metrics for worst-case correlation 

 
Fig 26: PRO-FM cross-correlation (TB = 1000) compared to metrics for 

worst-case correlation 

 
Fig. 27: LFM upchirp-downchirp cross-correlation (TB = 1000) compared to 

metrics for worst-case correlation 

VII. CONCLUSIONS 
It has long been observed that the separability between radar 

waveforms is dependent on the inverse of the time-bandwidth 
product shared between the interfering signals, herein termed 
the mutual time-bandwidth product. Here, we have established 
both statistical and analytical frameworks through which the 
average separability between interfering random frequency 
modulated waveforms can be assessed. The analytically-
derived predictor for waveform separability is found to compare 
well to the inverse-TB heuristic. Furthermore, the cross-
correlation can be predicted, based on the mutual time-
bandwidth product, and accounted for in system design, which 
could enable maximal spectral utilization for multistatic radars. 

Since randomly-generated radar waveforms exhibit 
stochastically varying cross-correlations, the analytically-
derived average correlation is insufficient for predicting the 
maximum correlation value. A hybrid approach, leveraging 
both extreme value theory and high-dimensional Monte Carlo 
simulations, is used to provide a closed-form predictor of the 
maximum cross-correlation and verify the resultant 



expressions. In this way, robust predictors for average and 
maximum expected cross-correlation values are derived that are 
based solely on waveform parameters, meaning that no data 
generation is required. 

APPRENDIX A. DERIVATION OF THE MULTI-LFM CROSS-
CORRELATION 

It is noted herein that the cross-correlation of an upchirp/ 
downchirp waveform pair produces an idealized response, with 
a zero-lag power roughly 3 dB lower than interfering RFMs of 
similar dimensionality. However, the ripple near the edges of 
the cross-correlation produces values very near the 1/TB 
heuristic for arbitrary interfering waveforms. Here, the 
analytical cross-correlation between interfering chirp 
waveforms is derived, which provides an analytical baseline 
against which the statistical derivations from other sections are 
compared. Though a restricted version of this derivation has 
been considered before [31], it is here considered more 
generally. 

First, let the ith interfering chirp waveform be expressed as  
 

𝑠𝑠𝑖𝑖(𝑡𝑡) = 𝑎𝑎𝑖𝑖 exp�𝑗𝑗2𝜋𝜋 �
𝑐𝑐𝑖𝑖

2
𝑡𝑡2 + 𝑓𝑓𝑖𝑖𝑡𝑡�� ,   𝑡𝑡 ∈ (0,𝑇𝑇𝑖𝑖) (A.1) 

where 𝑎𝑎𝑖𝑖  is the pulse amplitude for 𝑖𝑖 ∈ {1,2} , 𝑇𝑇𝑖𝑖  is the 
pulsewidth, 𝑐𝑐𝑖𝑖 = 𝐵𝐵𝑖𝑖/𝑇𝑇𝑖𝑖  is chirp rate for waveform i and 
bandwidth 𝐵𝐵𝑖𝑖 , and 𝑓𝑓𝑖𝑖 is the 𝑖𝑖th start frequency. Without loss of 
generality, assume that 𝑇𝑇1 ≤ 𝑇𝑇2. From (1), the cross-correlation 
between two interfering chirp waveforms is  

√𝐸𝐸1𝐸𝐸2𝑐𝑐1,2(𝜏𝜏) 

(A.2) 
= �

⎩⎪
⎪
⎨
⎪
⎪⎧exp

�
−𝑗𝑗2𝜋𝜋 �

𝑐𝑐1
2

(𝑡𝑡 − 𝜏𝜏)2 + 𝑓𝑓1(𝑡𝑡 − 𝜏𝜏)��

exp �𝑗𝑗2𝜋𝜋 �
𝑐𝑐2
2

𝑡𝑡2 + 𝑓𝑓2𝑡𝑡�� ⎭⎪
⎪
⎬
⎪
⎪⎫

𝑑𝑑𝑡𝑡 

∞

−∞

 

for waveform energies 𝐸𝐸𝑖𝑖 = 𝑎𝑎𝑖𝑖
2/𝑇𝑇𝑖𝑖. 

By combining the quadratic phase arguments in (A.2), the 
cross-correlation is rewritten as 
𝑐𝑐1,2(𝜏𝜏) 

(A.3) 
 = 1

√𝐸𝐸1𝐸𝐸2
� exp �𝑗𝑗 𝜋𝜋

2 �𝑎𝑎(𝜏𝜏)𝑡𝑡2 + 𝑏𝑏(𝜏𝜏)𝑡𝑡 + 𝑐𝑐(𝜏𝜏)�� 𝑑𝑑𝑡𝑡,

∞

−∞

 

where 
 𝑎𝑎(𝜏𝜏) = 2(𝑐𝑐2 − 𝑐𝑐1)

𝑏𝑏(𝜏𝜏) = 4(𝑐𝑐1𝜏𝜏 + 𝑓𝑓2 − 𝑓𝑓1)

𝑐𝑐(𝜏𝜏) = 4 �𝑓𝑓1𝜏𝜏 − 1
2

𝑐𝑐1𝜏𝜏2
� .

 (A.4) 

By completing the square for the quadratic phase argument in 
(A.3), the cross-correlation is simplified to 
𝑐𝑐1,2(𝜏𝜏) 

(A.5) 
= 𝑒𝑒

𝑗𝑗𝜋𝜋
2�𝑐𝑐(𝜏𝜏)−𝑏𝑏2(𝜏𝜏)

4𝑎𝑎(𝜏𝜏)�

 √𝐸𝐸1𝐸𝐸2
� exp �𝑗𝑗 𝜋𝜋

2
𝑎𝑎(𝜏𝜏) �𝑡𝑡 +

𝑏𝑏(𝜏𝜏)
2𝑎𝑎(𝜏𝜏)�

2

� 𝑑𝑑𝑡𝑡

∞

−∞

. 

To further simplify the cross-correlation, we perform a change 
of integration variables to  𝑔𝑔(𝑡𝑡; 𝜏𝜏) = √𝑎𝑎(𝜏𝜏)�𝑡𝑡 + 𝑏𝑏(𝜏𝜏)

2𝑎𝑎(𝜏𝜏)� . This 
results in 

 
𝑐𝑐1,2(𝜏𝜏) = 𝜅𝜅(𝜏𝜏) � exp �𝑗𝑗 𝜋𝜋

2
𝑔𝑔2(𝑡𝑡; 𝜏𝜏)� 𝑑𝑑𝑞𝑞

∞

−∞

, (A.6) 

where 
 

𝜅𝜅(𝜏𝜏) =

exp
�

𝑗𝑗 𝜋𝜋
2 �𝑐𝑐(𝜏𝜏) − 𝑏𝑏2(𝜏𝜏)

4𝑎𝑎(𝜏𝜏)��

 √𝐸𝐸1𝐸𝐸2𝑎𝑎(𝜏𝜏)
 . 

(A.7) 

The integral in (A.6) is computed, according to the limits of 
integration determined by the pulsewidths of the two interfering 
waveforms, yielding 

� exp �𝑗𝑗 𝜋𝜋
2

𝑔𝑔2(𝑡𝑡; 𝜏𝜏)� 𝑑𝑑𝑔𝑔

∞

−∞

  = � exp �𝑗𝑗 𝜋𝜋
2

𝑔𝑔2(𝑡𝑡; 𝜏𝜏)� 𝑑𝑑𝑔𝑔

𝑔𝑔(𝜏𝜏+𝑇𝑇1)

𝑔𝑔(0)

 

(A.8) 
 

+ � exp �𝑗𝑗 𝜋𝜋
2

𝑔𝑔2(𝑡𝑡; 𝜏𝜏)� 𝑑𝑑𝑔𝑔

𝑔𝑔(𝜏𝜏+𝑇𝑇1)

𝑔𝑔(𝜏𝜏)

 

 
+ � exp �𝑗𝑗 𝜋𝜋

2
𝑔𝑔2(𝑡𝑡; 𝜏𝜏)� 𝑑𝑑𝑔𝑔

𝑔𝑔(𝑇𝑇2)

𝑔𝑔(𝜏𝜏)

, 

where the parameterization on 𝜏𝜏  has been dropped from the 
limits of integration for simplicity. Through application of the 
fundamental theorem of calculus, (A.8) may be rewritten in 
terms of the complex normalized Fresnel integral, which is 
defined as 

 
𝐹𝐹 (𝜏𝜏) = � exp �𝑗𝑗 𝜋𝜋

2
𝑡𝑡2

� 𝑑𝑑𝑡𝑡

𝜏𝜏

0

, (A.9) 

thereby resulting in  
𝑐𝑐1,2(𝜏𝜏)  

= 𝜅𝜅(𝜏𝜏)
⎩⎪
⎨
⎪⎧

𝐹𝐹 �𝑔𝑔(𝜏𝜏 + 𝑇𝑇1)� − 𝐹𝐹 �𝑔𝑔(0)� 𝜏𝜏 ∈ (−𝑇𝑇1, 0)
𝐹𝐹 �𝑔𝑔(𝜏𝜏 + 𝑇𝑇1)� − 𝐹𝐹 �𝑔𝑔(𝜏𝜏)� 𝜏𝜏 ∈ (0, 𝑇𝑇2 − 𝑇𝑇1)

𝐹𝐹 �𝑔𝑔(𝑇𝑇2)� − 𝐹𝐹 �𝑔𝑔(𝜏𝜏)� 𝜏𝜏 ∈ (𝑇𝑇2 − 𝑇𝑇1, 𝑇𝑇2)
. (A.10) 

for  
 

 𝑔𝑔(𝑡𝑡; 𝜏𝜏) = √2(𝑐𝑐2 − 𝑐𝑐1) �𝑡𝑡 +
𝑐𝑐1𝜏𝜏 + 𝑓𝑓2 − 𝑓𝑓1

𝑐𝑐2 − 𝑐𝑐1 �. (A.11) 

Since much of this paper involves analysis of waveforms that 
are perfectly coincident in time and frequency, we now simplify 
(A.10) for this scenario. Consider the case of two interfering 
baseband chirps with identical bandwidths and pulsewidths, but 
opposite start frequencies and chirp rates. Consequently, the 
middle portion of (A.10) vanishes and the zero-lag power of the 
cross-correlation becomes 

 �𝑐𝑐1,2(0)�
2 = 𝑇𝑇

4𝐸𝐸1𝐸𝐸2𝑇𝑇 �𝐹𝐹 �𝑔𝑔(𝑇𝑇 )� − 𝐹𝐹 �𝑔𝑔(0)��
2 (A.12) 



 = 1
𝑎𝑎1

2𝑎𝑎2
2𝑇𝑇𝑇𝑇 �𝐹𝐹 �√𝑇𝑇𝑇𝑇��

2
, 

which indicates the inverse-TB dependency of the 
upchirp/downchirp cross-correlation. This result can be further 
simplified by letting 𝑎𝑎1 = 𝑎𝑎2 = 1 and noting that for 𝑇𝑇𝑇𝑇 ≥ 10 
the term  𝐹𝐹 �√𝑇𝑇𝑇𝑇� ≈ 1/2, which yields 

 
�𝑐𝑐1,2(0)�

2 ≈ 0.5
𝑇𝑇𝑇𝑇 

. (A.13) 

The approximation in (A.13) further emphasizes the 3-dB 
difference in zero-sample correlation observed between the 
LFM and RFM waveforms observed in Section I. 

Furthermore, the ripple at the edges of the 
upchirp/downchirp cross-correlation indicates that the 
maximum LFM upchirp/downchirp cross-correlation is 
approximately 

 𝑀𝑀 ≈ 0.9
𝑇𝑇𝑇𝑇

 . (A.14) 

Thus, when the ripple is accounted for, the upchirp/downchirp 
waveform pair provides nearly the same peak cross-correlation 
as random waveforms having the same TB. 

Table IV: Chirp Cross-Correlation Parameters 
 Fig. 28 Fig. 29 

𝑇𝑇1 1 μs 0.5 𝜇𝜇s 
𝑇𝑇2 1 μs 1 𝜇𝜇s 
𝑇𝑇1  50 MHz  100 MHz 
𝑇𝑇2  50 MHz  50 MHz 
𝑐𝑐1 50 MHz/μs 50 MHz/μs 
𝑐𝑐2 −50 MHz/μs −50 MHz/μs 
𝑓𝑓1 0 Hz 10 MHz 
𝑓𝑓2 0 Hz 0 Hz 

The analytical expression in (A.10) was compared to the 
numerical cross-correlation for two chirp waveforms, 
implemented according to (1). The results are depicted in Figs. 
28 and 29, with the corresponding waveform parameters for 
each test listed in Table IV. In Fig. 28, an upchirp and 
downchirp with identical pulsewidths and bandwidths are 
cross-correlated at baseband. Note that the analytical and 
numerical traces exactly coincide (within negligible errors due 
to sampling the waveforms for numerical implementation). 

 
Fig. 28: Comparison of numerically and analytically implemented cross-

correlations between LFM waveforms with opposite chirp rates. 

As a second demonstration of the efficacy of (A.10), two 
chirp waveforms were generated with differing pulsewidths, 
bandwidths, and center frequencies, as indicated in Table IV. 
The resulting correlation functions are shown in Fig. 29, where 
the analytical result again overlays the numerical assessment 
exactly. 

 
Fig. 29: Comparison of numerically and analytically implemented cross-

correlations between LFM waveforms with differing pulsewidths, bandwidths, 
and start frequencies. 

APPRENDIX B. PROOF THAT THE INNER PRODUCT 
CORRELATION ESTIMATE IS PURELY REAL 

To confirm that the inner product method for computing the 
expected power of the zero-lag cross-correlation provides a 
purely real result, use the conjugate symmetry property of the 
autocorrelation, i.e. 

 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡1, 𝑡𝑡2) = 𝑅𝑅𝑖𝑖𝑖𝑖
∗ (𝑡𝑡2, 𝑡𝑡1). (B.1) 

Applying (B.1) to the product of autocorrelations in (7) results 
in 

 𝑅𝑅11
∗ (𝑡𝑡1, 𝑡𝑡2)𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2) = 𝑅𝑅11(𝑡𝑡2, 𝑡𝑡1)𝑅𝑅22

∗ (𝑡𝑡2, 𝑡𝑡1), (B.2) 
meaning that the product of the two autocorrelations is 
conjugate symmetric about the line 𝑡𝑡1 = 𝑡𝑡2. Consequently, we 



can rewrite the 2-dimensional inner product from (7) as the 
integral sum  
〈𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2) , 𝑅𝑅11(𝑡𝑡1, 𝑡𝑡2)〉𝑡𝑡1,𝑡𝑡2 

(B.3) 
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for D1 and D2 the regions of integration for each integral, as 
depicted in Fig. 30. The bottom line of (B.3) comes from the 
conjugate symmetry property in (B.2). 

 
Fig. 30: Integration regions for cross-correlation of pulsed signals 

Imposing the limits of integration per Fig. 30 then yields 
〈𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2) , 𝑅𝑅11(𝑡𝑡1, 𝑡𝑡2)〉𝑡𝑡1,𝑡𝑡2 

(B.4) 
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Based on Fig. 30, we can rearrange the integrations for the 
second summand in (B.4) as 

�� � 𝑅𝑅11
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Substituting 0 into (B.3) results in 

� � 𝑅𝑅11(𝑡𝑡1, 𝑡𝑡2)𝑅𝑅22
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 = � � 𝑅𝑅11

∗ (𝑡𝑡1, 𝑡𝑡2)𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
𝑡𝑡2

0

𝑇𝑇

0
+ 

     �� � 𝑅𝑅11
∗ (𝑡𝑡2, 𝑡𝑡1)𝑅𝑅22(𝑡𝑡2, 𝑡𝑡1)𝑑𝑑𝑡𝑡2𝑑𝑑𝑡𝑡1

𝑡𝑡1

0
 

𝑇𝑇

0 �

∗
 

 = 2𝑅𝑅𝑅𝑅 �� � 𝑅𝑅11
∗ (𝑡𝑡1, 𝑡𝑡2)𝑅𝑅22(𝑡𝑡1, 𝑡𝑡2)𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2

𝑡𝑡2

0

𝑇𝑇

0 �, 

which provides the purely real result that we expect for 
computation of 𝜇𝜇02. 

APPRENDIX C. SINC-FUNCTION APROXIMATION TO DETERMINE 
CROSS-CORRELATION  LEVEL 

Based on the inner product form of the cross-correlation 
derived in Section II it is possible to develop a useful rule-of-
thumb for the cross-correlation level. This process is leveraged 
to confirm the heuristic based on the inverse of the time-
bandwidth product. Specifically, we approximate each 
autocorrelation by a surrogate function that is readily integrable 
in closed form. The interfering waveforms are taken to be FM, 
and the autocorrelation shape is approximated by a sinc 
function, where sinc(x) = sin(x)/x, the justification for which 
comes from the observation that LFM waveforms exhibit sinc-
like autocorrelation sidelobes while also exhibiting cross-
correlations that follow the inverse time-bandwidth trend.  

For simplicity, the interfering waveforms are assumed to 
have equal time support, though in the unequal case the time 
support for integration can simply be set to the minimum of the 
two pulsewidths. Waveform 1 has frequency support on 𝑓𝑓 ∈
�𝑓𝑓1

−, 𝑓𝑓1
+

� yielding bandwidth 𝑇𝑇1 = 𝑓𝑓1
+ − 𝑓𝑓1

−, corresponding to 
the limits of a rectangular spectra. Likewise, the spectrum for 
waveform 2 is similarly defined on 𝑓𝑓 ∈ �𝑓𝑓2

−, 𝑓𝑓2
+

�. Finally, it is 
assumed without loss of generality that the waveforms have 
some spectral overlap, defined by 𝑓𝑓1

− ≤ 𝑓𝑓2
− ≤ 𝑓𝑓1

+ ≤ 𝑓𝑓2
+.  This 

scenario is depicted in Fig. 31 that illustrates the relationships 
between the waveforms’ spectral bounds, as well as their 
frequency overlap, which will be shown to determine the cross-
correlation level. 

 
Fig 31: Interfering radar spectra (rectangular support) 



Using the sinc approximation, the respective 
autocorrelations become 

 𝑅𝑅11(𝜏𝜏) = 𝑎𝑎1
2sinc(𝑇𝑇1𝜏𝜏) exp(𝑗𝑗2𝜋𝜋𝑓𝑓1𝜏𝜏) (C.1) 

and 
 𝑅𝑅22(𝜏𝜏) = 𝑎𝑎2

2sinc(𝑇𝑇2𝜏𝜏) exp(𝑗𝑗2𝜋𝜋𝑓𝑓2𝜏𝜏) (C.2) 
for waveform amplitudes 𝑎𝑎1  and 𝑎𝑎2. Noting that the limits of 
integration for the inner product in (B.6) are from 0 to the 
minimum pulsewidth between the waveforms T, computation 
via (9) then yields 

𝜇𝜇0
2  =

2
𝐸𝐸1𝐸𝐸2

𝑅𝑅𝑅𝑅 �� � 𝑅𝑅11
∗ (𝑢𝑢)𝑅𝑅22(𝑢𝑢) 𝑑𝑑𝑢𝑢 𝑑𝑑𝑑𝑑

𝑑𝑑

0

𝑇𝑇

0 � 

(C.3) 
  

 =
2𝑎𝑎1

2𝑎𝑎2
2

 𝐸𝐸1𝐸𝐸2 � �
⎣
⎢
⎢
⎡sin(𝜋𝜋𝑇𝑇1𝑢𝑢)

𝜋𝜋𝑇𝑇1𝑢𝑢
sin(𝜋𝜋𝑇𝑇2𝑢𝑢)

𝜋𝜋𝑇𝑇2𝑢𝑢
×

cos�2𝜋𝜋(𝑓𝑓2 − 𝑓𝑓1)� ⎦
⎥
⎥
⎤

𝑑𝑑𝑢𝑢 𝑑𝑑𝑑𝑑

𝑑𝑑

0

𝑇𝑇

0

. 

The steps to evaluate the double integral are omitted here, but 
(C.3) readily admits 

 
𝜇𝜇0

2 =
2𝑎𝑎1

2𝑎𝑎2
2

 𝐸𝐸1𝐸𝐸2
[𝐴𝐴 + 𝑇𝑇 − 𝐶𝐶 − 𝐷𝐷], (C.4) 

where  
 𝐴𝐴 = 1

𝛽𝛽 �
𝑇𝑇 𝛼𝛼𝐴𝐴 Si(𝛼𝛼𝐴𝐴𝑇𝑇 ) − 1 + cos(𝛼𝛼𝐴𝐴𝑇𝑇 ) −

Ci(𝛼𝛼𝐴𝐴𝑇𝑇) + ln(𝛼𝛼𝐴𝐴𝑇𝑇) �, (C.5a) 

 𝑇𝑇 = 1
𝛽𝛽 �

𝑇𝑇 𝛼𝛼𝑇𝑇 Si(𝛼𝛼𝑇𝑇𝑇𝑇 ) − 1 + cos(𝛼𝛼𝑇𝑇𝑇𝑇 ) −
Ci(𝛼𝛼𝐵𝐵𝑇𝑇) + ln(𝛼𝛼𝐵𝐵𝑇𝑇) �, (C.5b) 

 𝐶𝐶 = 1
𝛽𝛽 �

𝑇𝑇 𝛼𝛼𝐶𝐶 Si(𝛼𝛼𝐶𝐶𝑇𝑇 ) − 1 + cos(𝛼𝛼𝐶𝐶𝑇𝑇 ) −
Ci(𝛼𝛼𝐶𝐶𝑇𝑇) + ln(𝛼𝛼𝐶𝐶𝑇𝑇) �, (C.5c) 

and 
 𝐷𝐷 = 1

𝛽𝛽 �
𝑇𝑇 𝛼𝛼𝐷𝐷 Si(𝛼𝛼𝐷𝐷𝑇𝑇 ) − 1 + cos(𝛼𝛼𝐷𝐷𝑇𝑇 ) −

Ci(𝛼𝛼𝐷𝐷𝑇𝑇) + ln(𝛼𝛼𝐷𝐷𝑇𝑇) �, (C.5d) 

for 
 𝛼𝛼𝐴𝐴 = 2𝜋𝜋�𝑓𝑓2

+ − 𝑓𝑓1
−�, (C.6a) 

 𝛼𝛼𝑇𝑇 = 2𝜋𝜋�𝑓𝑓1
+ − 𝑓𝑓2

−�, (C.6b) 

 𝛼𝛼𝐶𝐶 = 2𝜋𝜋�𝑓𝑓2
− − 𝑓𝑓1

−�, (C.6c) 

 𝛼𝛼𝐷𝐷 = 2𝜋𝜋�𝑓𝑓2
+ − 𝑓𝑓1

+
�, (C.6d) 

and 
 𝛽𝛽 = 4𝜋𝜋2𝑇𝑇1𝑇𝑇2. (C.6e) 

The terms Si(⋅)  and Ci(⋅)  are the sine integral and cosine 
integral, respectively [32]. This expression can be simplified 
significantly by assuming that  

|𝛼𝛼𝑇𝑇  Si(𝛼𝛼𝑇𝑇 )| ≫ |1 − cos(𝛼𝛼𝑇𝑇 ) + Ci(𝛼𝛼𝑇𝑇 ) − ln(𝛼𝛼𝑇𝑇 )|, (C.7) 
which is true for even modest products 𝛼𝛼𝑇𝑇 ≥ 10 . Similarly, 
given this assumption, Ci(𝛼𝛼𝑇𝑇 ) ≈ 0  and Si(𝛼𝛼𝑇𝑇 ) ≈ 𝜋𝜋

2 sgn(𝛼𝛼𝑇𝑇 ) . 
Inserting these simplifications into (C.4) results in 

 
𝜇𝜇0

2 ≈
2𝑎𝑎1

2𝑎𝑎2
2

 𝐸𝐸1𝐸𝐸2 �
𝑇𝑇 𝛼𝛼𝐴𝐴

𝛽𝛽
+

𝑇𝑇 𝛼𝛼𝑇𝑇
𝛽𝛽

−
𝑇𝑇 𝛼𝛼𝐶𝐶

𝛽𝛽
−

𝑇𝑇 𝛼𝛼𝐷𝐷
𝛽𝛽 �. (C.7) 

Subsequently substituting in (C.6a) through (C.6e) yields 
 

𝜇𝜇0
2 ≈

𝑇𝑇 𝑎𝑎1
2𝑎𝑎2

2

 𝑇𝑇1𝑇𝑇2𝐸𝐸1𝐸𝐸2
�𝑓𝑓1

+ − 𝑓𝑓2
−�. (C.8) 

Noting that 𝐸𝐸1 = 𝑎𝑎1
2𝑇𝑇  and 𝐸𝐸2 = 𝑎𝑎2

2𝑇𝑇 , (C.8) therefore becomes 
 

𝜇𝜇0
2 ≈

𝑓𝑓1
+ − 𝑓𝑓2

−

𝑇𝑇 𝑇𝑇1𝑇𝑇2
, (C.9) 

which directly relates the cross-correlation power to the given 
bandwidths and their spectral overlap. Moreover, in the case of 
complete spectral overlap, where 𝑇𝑇1 = 𝑇𝑇2 , 𝑓𝑓1

+ = 𝑓𝑓2
+ , and 

𝑓𝑓1
− = 𝑓𝑓2

−, (C.9) simplifies to 
 𝜇𝜇0

2 ≈ 1
𝑇𝑇𝑇𝑇

, (C.10) 

which shows that, for the sinc approximation of autocorrelation, 
the mean-square value of the cross-correlation (at zero-lag) is 
determined by the inverse of the mutual time-bandwidth 
product. 

While (C.9) was derived assuming perfectly bandlimited 
waveforms, practical systems can at best achieve some degree 
of spectral containment that involves a reasonable roll-off. To 
assess the efficacy of (C.9) in the context of spectral roll-off, a 
baseband Monte Carlo simulation was performed using PRO-
FM waveforms having TB = 100 and designed for a super-
Gaussian spectral template [33]. The super-Gaussian template 
provides a convenient and practical means to control spectral 
containment via an exponent term that determines the ratio of 
energy contained in the 6-dB bandwidth (i.e. coinciding with 
swept bandwidth for LFM). Here, shape parameters of p = 2, 4, 
and 16 were used (p = 2 provides a Gaussian power spectrum 
while higher p corresponds to increasingly rectangular spectra). 
As depicted in Fig. 32 for p = 16, the interfering waveform 
center frequency was shifted by varying degrees to evaluate the 
effect of the spectral roll-off on waveform separability.  

 
Fig 32: Frequency-shifted super-Gaussian spectra (at baseband) to assess the 

impact of spectral roll-off on expected separability 

For each frequency shift (and each super-Gaussian spectral 
template shape), 1000 cross-correlation responses were 
generated from 1001 independent PRO-FM waveforms. The 
RMS zero-lag cross-correlation was then computed via (11) and 



plotted in Fig. 33. Noting that the normalized frequency axis is 
plotted in units of [Hz/B] (meaning that a shift of 1 indicates 
𝑓𝑓1

+ = 𝑓𝑓2
− ), it is interesting to observe that all three super-

Gaussian shapes exhibit separability very close to the level 
predicted by (C.9) when the amount of normalized frequency 
shift is in the interval [0,1]. Beyond a normalized frequency 
shift of 1, however, (C.9) yields a correlation of zero while we 
clearly see a continued roll-off. This result indicates that (C.9), 
and likewise the inverse-TB rule, only applies when the 
passbands possess some degree of overlap.  

 
Fig. 33: RMS-average cross-correlation between frequency-shifted waveforms 

obtained via Monte Carlo 

APPRENDIX D. SINC BASIS EXPANSION 
Consider some continuous time-domain signal s(t) that we 

wish to describe by a discrete set of parameters denoted 
{… , 𝑠𝑠−2, 𝑠𝑠−1, 𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … }.  To do so, we can conveniently 
expand s(t) via projection onto an orthonormal basis. Here, we 
choose the sinc basis since the resultant basis weights are 
simply the waveform samples, assuming a perfectly 
bandlimited waveform (clearly an approximation for pulsed 
radar). Thus, define the sinc basis expansion as 

 
𝑠𝑠(𝑡𝑡) = � 𝑠𝑠(𝑛𝑛𝑡𝑡s) sinc �

𝑡𝑡
𝑇𝑇s

− 𝑛𝑛�

∞

𝑛𝑛=−∞
 (D.1) 

for discrete integer sample index n and sampling interval 𝑡𝑡s  . 
Truncating the summation limits to 𝑛𝑛 ∈ {0,1, … , 𝑁𝑁 − 1} based 
on the time support 𝑇𝑇  of s(t), where 𝑇𝑇 = 𝑁𝑁𝑇𝑇s, yields the finite-
length signal vector 𝐬𝐬 = �𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁−1�

𝑇𝑇 for 𝑠𝑠𝑛𝑛 = 𝑠𝑠(𝑛𝑛𝑇𝑇s). The 
basis expansion can then be written in vector form as 

 
𝑠𝑠(𝑡𝑡) ≈ � 𝑠𝑠𝑛𝑛sinc �

𝑡𝑡
𝑇𝑇s

− 𝑛𝑛�

𝑁𝑁−1

𝑛𝑛=0
= 𝐩𝐩𝑇𝑇 (𝑡𝑡) 𝐬𝐬, (D.2) 

where 𝐩𝐩(𝑡𝑡) = �𝑝𝑝0(𝑡𝑡), 𝑝𝑝1(𝑡𝑡), . . , 𝑝𝑝𝑁𝑁−1(𝑡𝑡)�
𝑻𝑻  is the vector of sinc 

basis functions at time instant t, individually expressed as 
 

𝑝𝑝𝑛𝑛(𝑡𝑡) =  sinc �
𝑡𝑡

𝑇𝑇s
− 𝑛𝑛�. (D.3) 

By using this basis expansion, a continuous-time waveform 
can be analyzed by a discrete set of parameters. This form is 

conveniently leveraged in Section IV, where the statistics of the 
samples of the normalized cross-correlation are considered. 

APPRENDIX E. MAXIMIZATION OF THE GUMBEL DISTRIBUTION 
Here, we wish to solve for the maximum-likelihood 

estimates of the parameters 𝜇𝜇  and 𝛽𝛽  in (40). To do so, the 
second-order Taylor expansion of (40) is computed and 
maximized in closed form. Since this procedure is most 
accurate when the Taylor expansion is performed near the peak 
of the likelihood function, the average maximum cross-
correlation is simulated via Monte-Carlo, where the mutual 
time-bandwidth product is varied across several orders-of-
magnitude. This approach allows for a reasonable Taylor 
expansion point to be reliably found, based only on waveform 
parameters (pulsewidth and bandwidth). 

In general, a Gumbel random variable’s likelihood function 
is better approximated by a 2nd-order Taylor expansion 
compared to its log-likelihood function. Since computing 
derivatives is simpler for the log-likelihood function, we first 
compute the derivatives of the log-likelihood function, which 
are then be related to those of the standard likelihood function 
through the chain rule. 

Take the natural logarithm of (40) results in 

𝐿𝐿(𝜇𝜇, 𝛽𝛽|𝐱𝐱)  = � ln�𝑃𝑃 (𝜇𝜇, 𝛽𝛽|𝑋𝑋𝑘𝑘 = 𝑥𝑥𝑘𝑘)�
K−1

𝑘𝑘=0
 

(E.1) 

 = −K ln(𝛽𝛽) − �
𝑥𝑥𝑘𝑘 − 𝜇𝜇

𝛽𝛽

𝐾𝐾−1

𝑘𝑘=0
− � 𝑅𝑅

−𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽

𝐾𝐾−1

𝑘𝑘=0
, 

so the first derivatives with respect to 𝛽𝛽 and 𝜇𝜇 are 

 
𝜕𝜕𝐿𝐿
𝜕𝜕𝛽𝛽

= − 1
𝛽𝛽

⎝
⎜
⎜
⎛
K − �

𝑥𝑥𝑘𝑘 − 𝜇𝜇
𝛽𝛽

𝐾𝐾−1

𝑘𝑘=0
�1 − 𝑅𝑅

−𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽

�
⎠
⎟
⎟
⎞
 (E.2) 

and 

 
𝜕𝜕𝐿𝐿
𝜕𝜕𝜇𝜇

= 1
𝛽𝛽 �

K − � 𝑅𝑅
−𝑥𝑥𝑘𝑘−𝜇𝜇

𝛽𝛽
𝐾𝐾−1

𝑘𝑘=0 �
. (E.3) 

The second derivatives of the log-likelihood function, 
representing elements of the Hessian matrix are 

𝜕𝜕2𝐿𝐿(𝐱𝐱; 𝜇𝜇, 𝛽𝛽)
𝜕𝜕𝛽𝛽2   = 1

𝛽𝛽2 �
𝐾𝐾 − � �

2(𝑥𝑥𝑘𝑘 − 𝜇𝜇)
𝛽𝛽 �1 − 𝑅𝑅

−𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽

�

𝐾𝐾−1

𝑘𝑘=0
 

(E.4a) 

     + �
𝑥𝑥𝑘𝑘 − 𝜇𝜇

𝛽𝛽 �

2
𝑅𝑅

−𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽

��, 

𝜕𝜕2𝐿𝐿(𝐱𝐱; 𝜇𝜇,𝛽𝛽)
𝜕𝜕𝛽𝛽𝜕𝜕𝜇𝜇

= −
1
𝛽𝛽2

�𝐾𝐾 −� 𝑒𝑒−
𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽 �1 +

𝑥𝑥𝑘𝑘 − 𝜇𝜇
𝛽𝛽

�
𝐾𝐾−1

𝑘𝑘=0

�, (E.4b) 

𝜕𝜕2𝐿𝐿(𝐱𝐱; 𝜇𝜇,𝛽𝛽)
𝜕𝜕𝜇𝜇𝜕𝜕𝛽𝛽

= −
1
𝛽𝛽2

�𝐾𝐾 −� 𝑒𝑒−
𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽 �1 +

𝑥𝑥𝑘𝑘 − 𝜇𝜇
𝛽𝛽

�
𝐾𝐾−1

𝑘𝑘=0

�, (E.4c) 

𝜕𝜕2𝐿𝐿(𝐱𝐱; 𝜇𝜇,𝛽𝛽)
𝜕𝜕𝜇𝜇2

=
1
𝛽𝛽2

� 𝑒𝑒−
𝑥𝑥𝑘𝑘−𝜇𝜇
𝛽𝛽

𝐾𝐾−1

𝑘𝑘=0

. (E.4d) 



Defining the vectors 𝛂𝛂 = [𝜇𝜇,𝛽𝛽]𝑇𝑇 and 𝛂𝛂0 = [𝜇𝜇0,𝛽𝛽0]𝑇𝑇, where 𝜶𝜶0 
is the point about which the Taylor expansion of (E.1) is 
performed, we can approximate the log-likelihood function as  

TL(𝛂𝛂;𝛂𝛂0)  =  𝐿𝐿(𝛂𝛂𝟎𝟎|𝐱𝐱) + (𝛂𝛂 − 𝛂𝛂0)𝑇𝑇�∇𝛂𝛂𝐿𝐿(𝛂𝛂0|𝐱𝐱)� 
(E.5) 

     + 1
2

(𝛂𝛂 − 𝛂𝛂0)𝑇𝑇
�∇𝛂𝛂

2 𝐿𝐿(𝛂𝛂0|𝐱𝐱)�(𝛂𝛂 − 𝛂𝛂0), 

which is quadratic in 𝛽𝛽 and 𝜇𝜇. To find the global maximum of 
(40) we first compute the gradient, resulting in the linear 
equation 

∇𝛂𝛂TL(𝛂𝛂;𝛂𝛂0) =  ∇𝛂𝛂𝐿𝐿(𝛂𝛂0|𝐱𝐱) + �∇𝛂𝛂
2 𝐿𝐿(𝛂𝛂0|𝐱𝐱)� (𝛂𝛂 − 𝛂𝛂0). (E.6) 

The Taylor expansion of the actual likelihood function can 
be related to the expansion of the log-likelihood function using 
the chain rule via 

 𝛻𝛻𝑃𝑃 (𝛂𝛂) = 𝑃𝑃 (𝛂𝛂)𝛻𝛻𝐿𝐿(𝛂𝛂), (E.7) 
and 

 𝛻𝛻2𝑃𝑃 (𝛂𝛂) = 𝑃𝑃 (𝛂𝛂)�∇𝛂𝛂
2 𝐿𝐿(𝛂𝛂) + ∇𝛂𝛂𝐿𝐿(𝛂𝛂)∇𝛂𝛂

𝑇𝑇 𝐿𝐿(𝛂𝛂)�, (E.8) 

where the notations 𝑃𝑃 (𝛂𝛂) = 𝑃𝑃 (𝜇𝜇, 𝛽𝛽|𝐱𝐱), and 𝐿𝐿(𝛂𝛂) = 𝐿𝐿(𝜇𝜇, 𝛽𝛽|𝐱𝐱) 
have been used for notational compactness. Inserting (E.7) and 
(E.8) into (E.6) then yields 

T𝑃𝑃 (𝜶𝜶; 𝜶𝜶0)  = 𝑃𝑃 (𝜶𝜶0)[𝑇𝑇𝐿𝐿(𝜶𝜶; 𝜶𝜶0) − 𝐿𝐿(𝛂𝛂𝟎𝟎) 
(E.9) 

     +(𝛂𝛂 − 𝛂𝛂0)T∇𝛂𝛂L(𝛂𝛂0)∇𝛂𝛂
TL(𝛂𝛂0)(𝛂𝛂 − 𝛂𝛂0)], 

with corresponding gradient 
∇T𝑃𝑃(𝜶𝜶;𝜶𝜶0)  = 𝑃𝑃(𝜶𝜶0)[∇𝑇𝑇𝐿𝐿(𝜶𝜶;𝜶𝜶0) 

(E.10) 
     +2∇𝐿𝐿(𝛂𝛂0)∇T𝐿𝐿(𝛂𝛂0)(𝛂𝛂 − 𝛂𝛂0)�. 
For convenience of presentation, define the normalized, data-

dependent parameter 𝑧𝑧𝑘𝑘 = 𝑥𝑥𝑘𝑘−𝜇𝜇0
𝛽𝛽0

 and the following constants 

 𝑎𝑎0 = 1
𝛽𝛽0 �(1 − 𝑅𝑅−𝑧𝑧𝑘𝑘)

𝐾𝐾

𝑘𝑘=0
, (E.11a) 

 𝑎𝑎1 = 1
𝛽𝛽0

2 � 𝑅𝑅−𝑧𝑧𝑘𝑘

𝐾𝐾

𝑘𝑘=0
, (E.11b) 

 𝑎𝑎2 =  1
𝛽𝛽0

2 ��1 − 𝑅𝑅−𝑧𝑧𝑘𝑘(1 − 𝑧𝑧𝑘𝑘)�
𝐾𝐾

𝑘𝑘=0
, (E.11c) 

 𝑏𝑏0 = − 1
𝛽𝛽0 ��1 − 𝑧𝑧𝑘𝑘(1 − 𝑅𝑅−𝑧𝑧𝑘𝑘)�

𝐾𝐾

𝑘𝑘=0
, (E.11d) 

 𝑏𝑏1 = 1
𝛽𝛽0

2 ��1 − 2𝑧𝑧𝑘𝑘(1 − 𝑅𝑅−𝑧𝑧𝑘𝑘) + 𝑧𝑧0
2𝑅𝑅−𝑧𝑧𝑘𝑘�

𝐾𝐾

𝑘𝑘=0
. (E.11e) 

We can then rewrite the gradient of the Taylor expansion for the 
log-likelihood function in (E.10) in the form 

 ∇TL(𝜇𝜇, 𝛽𝛽; 𝜇𝜇0, 𝛽𝛽0) = �
𝑎𝑎0 + 𝑎𝑎1(𝜇𝜇 − 𝜇𝜇0) + 𝑎𝑎2(𝛽𝛽 − 𝛽𝛽0)
𝑏𝑏0 + 𝑏𝑏1(𝛽𝛽 − 𝛽𝛽0) + 𝑎𝑎2(𝜇𝜇 − 𝜇𝜇0)�, (E.12) 

and the term from (E.10) used to compute the gradient for the 
full likelihood function can be written as 
2∇L(𝛂𝛂0)∇TL(𝛂𝛂0)(𝛂𝛂 − 𝛂𝛂0) (E.13) 

 = 2�(𝜇𝜇 − 𝜇𝜇0)𝑎𝑎0 + (𝛽𝛽 − 𝛽𝛽0)𝑏𝑏0� �
𝑎𝑎0
𝑏𝑏0� 

 
= �

2𝑎𝑎0�(𝜇𝜇 − 𝜇𝜇0)𝑎𝑎0 + (𝛽𝛽 − 𝛽𝛽0)𝑏𝑏0�
2𝑏𝑏0�(𝜇𝜇 − 𝜇𝜇0)𝑎𝑎0 + (𝛽𝛽 − 𝛽𝛽0)𝑏𝑏0��. 

Therefore, the gradient of the full, Taylor-expanded likelihood 
function becomes 

∇Tp(𝜶𝜶; 𝜶𝜶0) =  𝑃𝑃 (𝜶𝜶0)

⎣
⎢
⎢
⎢
⎢
⎡
�

𝑎𝑎0 + �𝑎𝑎1 + 2𝑎𝑎0
2�(𝜇𝜇 − 𝜇𝜇0)

+(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)(𝛽𝛽 − 𝛽𝛽0) �

�
𝑏𝑏0 + �𝑏𝑏1 + 2𝑏𝑏0

2�(𝛽𝛽 − 𝛽𝛽0)
+(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)(𝜇𝜇 − 𝜇𝜇0) �⎦

⎥
⎥
⎥
⎥
⎤

. (E.14) 

Setting (E.14) equal to zero and rearranging results in the 
system of linear equations 

     �
�𝑎𝑎1 + 2𝑎𝑎0

2� (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)
(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0) �𝑏𝑏1 + 2𝑏𝑏0

2� � �
𝜇𝜇 − 𝜇𝜇0
𝛽𝛽 − 𝛽𝛽0 � = − �

𝑎𝑎0
𝑏𝑏0�, (E.15) 

which can be used to solve for the vector parameter 
�𝜇𝜇 − 𝜇𝜇0, 𝛽𝛽 − 𝛽𝛽0�

𝑇𝑇  in terms of the data-dependent constants in 
(E.11a) through (E.11e). Doing so results in 

  �
(𝜇𝜇 − 𝜇𝜇0)
(𝛽𝛽 − 𝛽𝛽0)� = 1

𝐷𝐷0 �
−𝑎𝑎0�𝑏𝑏1 + 2𝑏𝑏0

2� + 𝑏𝑏0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)
−𝑏𝑏0�𝑎𝑎1 + 2𝑎𝑎0

2� + 𝑎𝑎0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)�
, (E.16) 

where 𝐷𝐷0 is the determinant of the matrix on the left-hand side 
of (E.15). That is, 

 𝐷𝐷0 = �𝑎𝑎1 + 2𝑎𝑎0
2��𝑏𝑏1 + 2𝑏𝑏0

2� − (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)2. (E.17) 

Based on (E.15), the maximum-likelihood parameter 
estimates for the Gumbel distribution are the location parameter 

𝜇𝜇�̂�𝑀𝐿𝐿 ≈ 𝜇𝜇0 +
−𝑎𝑎0�𝑏𝑏1 + 2𝑏𝑏0

2� + 𝑏𝑏0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)

�𝑎𝑎1 + 2𝑎𝑎0
2��𝑏𝑏1 + 2𝑏𝑏0

2� − (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)2
 (E.18) 

and the corresponding scale parameter 

𝛽𝛽�̂�𝑀𝐿𝐿 ≈ 𝛽𝛽0 +
−𝑏𝑏0�𝑎𝑎1 + 2𝑎𝑎0

2� + 𝑎𝑎0(𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)

�𝑎𝑎1 + 2𝑎𝑎0
2��𝑏𝑏1 + 2𝑏𝑏0

2� − (𝑎𝑎2 + 2𝑎𝑎0𝑏𝑏0)2
. (E.19) 

It should be noted that the maximum-likelihood estimates for 
the parameters of the Gumbel distribution are still dependent on 
the data vector x, meaning that data must be generated in order 
to estimate the maximum expected cross-correlation values. To 
circumvent this dependence, now replace the data vector x with 
its expected value 𝐸𝐸{𝐱𝐱}. The expected value for a Gumbel-
distributed extreme value index x is 

 𝐸𝐸{x} = 𝜇𝜇 + 𝛾𝛾𝛽𝛽, (E.20) 
where 𝛾𝛾 = 0.57721 … is the Euler-Mascheroni constant. For 
our purposes, the parameters 𝜇𝜇 and 𝛽𝛽 are approximated by the 
Taylor expansion parameters 𝜇𝜇0  and 𝛽𝛽0  that are found 
empirically. Note that this replacement implies that the Taylor 
expansion has been performed exactly at the maximum of the 
likelihood function. Thus, the variable 𝑧𝑧𝑘𝑘 can be approximated 
as 

 𝑧𝑧𝑘𝑘 =
𝑥𝑥𝑘𝑘 − 𝜇𝜇

𝛽𝛽
≈

(𝜇𝜇0 + 𝛾𝛾𝛽𝛽0) − 𝜇𝜇0
𝛽𝛽0

= 𝛾𝛾. (E.21) 

Using (E.21), we can now approximate the data-dependent 
constants in (E.11a) through (E.11e) as 



 𝑎𝑎0 ≈
𝐾𝐾(1 − 𝑅𝑅−𝛾𝛾)

𝛽𝛽0
, (E.22a) 

 𝑎𝑎1 ≈ 𝐾𝐾𝑅𝑅−𝛾𝛾

𝛽𝛽0
2 , (E.22b) 

 𝑎𝑎2 ≈  
𝐾𝐾�1 − 𝑅𝑅−𝛾𝛾(1 − 𝛾𝛾)�

𝛽𝛽0
2 , (E.22c) 

 𝑏𝑏0 ≈ −
𝐾𝐾�1 − 𝛾𝛾(1 − 𝑅𝑅−𝛾𝛾)�

𝛽𝛽0
, (E.22d) 

 𝑏𝑏1 ≈
𝐾𝐾�1 − 2𝛾𝛾(1 − 𝑅𝑅−𝛾𝛾) + 𝛾𝛾2𝑅𝑅−𝛾𝛾�

𝛽𝛽0
2 , (E.22e) 

which are now independent of data vector x. From this 
approximation, we can compute the limit  of the maximum-
likelihood estimates in (E.18) and (E.19) as K approaches 
infinity, for which lim

𝐾𝐾→∞
𝜇𝜇�ML = 𝜇𝜇0 and lim

𝐾𝐾→∞
𝛽𝛽�ML = 𝛽𝛽0. This result 

makes intuitive sense because the Taylor expansion was 
assumed to have been performed at the maximum of the 
likelihood function.  In practice, we can never truly have an 
infinite number of data samples and we typically only care 
about the maximum cross-correlation on a per-pulse-pair basis.  
Consequently, we can simply set K=1. 

The final step to acquire a closed form estimate for the 
maximum magnitude of the cross-filtered response is to choose 
the point [𝜇𝜇0,𝛽𝛽0]  where the Taylor expansion is performed. 
Here, the sample mean and sample variance are chosen to solve 
for the initial distribution parameters. Therefore, the Taylor-
expanded procedure can be viewed as a refinement of the mean 
and variance estimation using the maximum-likelihood 
estimates of Gaussian distributed data. 

To approximate the sample statistics for the maximum cross-
correlation between IID RFM waveforms, a Monte Carlo 
simulation was configured. Here, an ensemble of 2000 cross-
correlation functions were generated using uniformly-
distributed random PCFM waveforms, for each time-bandwidth 
product in the set 𝑇𝑇𝑇𝑇 ∈ �1, 2, … , 104�. The maximum values 
were computed for each correlation function, along with the 
sample average and variance. A log-domain least-squares 
regression was then performed assuming the model 

 dB[𝐸𝐸{𝑀𝑀}] = −𝑐𝑐110 log10(𝑇𝑇𝑇𝑇) + 𝑐𝑐2 (E.23) 
and 

 dB[𝑉𝑉𝑎𝑎𝑟𝑟{𝑀𝑀}] = −𝑐𝑐310 log10(𝑇𝑇𝑇𝑇) + 𝑐𝑐4, (E.24) 
where 𝑐𝑐1,  𝑐𝑐2,  𝑐𝑐3,  and 𝑐𝑐4  are the model constants to be 
determined through regression. For a given time-bandwidth 
product, let x be the sample mean vector in dB, and y be the 
sample variance vector in dB. Also, let z be the vector of log-
domain inverse time-bandwidth products. That is 𝑧𝑧𝑖𝑖 =
−10 log10([𝑇𝑇𝑇𝑇]𝑖𝑖).  The regression problem is solved by  

 min
𝑐𝑐1,𝑐𝑐2,𝑐𝑐3,𝑐𝑐4 ��

𝑐𝑐1 𝑐𝑐2
𝑐𝑐3 𝑐𝑐4� �

𝐳𝐳T

𝟏𝟏T� − �
𝐱𝐱
𝐲𝐲��2

2
, (E.25) 

which is quadratic and can therefore be solved in closed form. 
For the specific dataset shown in Figs. 34 and 35, the regressed 
constants are presented in Table V. 

Table V: Regression Constants 
𝑐𝑐1 0.85781 
𝑐𝑐2 3.5402... 
𝑐𝑐3 1.1107... 
𝑐𝑐4 -9.8010... 

 
Fig 34: Observed average cross-correlation obtained via Monte Carlo 

simulation, compared to the implemented log-domain least-squares regression. 

 
Fig 35: Observed cross-correlation variance obtained via Monte Carlo 

simulation, compared to the implemented log-domain least-squares regression. 

Using the above regression constants, the Taylor expansion 
point can be solved for as   

 
𝜇𝜇0 = 10

−𝑐𝑐1 log(𝑇𝑇𝑇𝑇)+𝑐𝑐2
20 − 𝛾𝛾𝛽𝛽0, (E.26) 

and 
 

𝛽𝛽0 = �
𝜋𝜋2

6
10

−𝑐𝑐3 log(𝑇𝑇𝑇𝑇)+𝑐𝑐4
10

�

1
2
. (E.27) 



From these formulae, and the regression constants given in 
Table V, an approximate but accurate maximum-likelihood 
estimate can be computed for the distribution parameters of the 
Gumbel distribution corresponding to two cross-correlating 
RFM waveforms using (E.18), (E.19), and (E.22a) through 
(E.22e).  

It should be noted that the Taylor expansion, and subsequent 
regression, performed here specifically depends on the mutual 
time-bandwidth product and not the individual time-bandwidth 
products of the interfering waveforms. As such, the resulting 
predictors of the maximum cross-correlation are generalizable 
for all independently generated RFM waveforms with a 
measurable degree of common time-frequency support. This 
result is validated in section VI, where it is shown that the 
regression of (E.25) alone provides a good predictor of 
maximum cross-correlation, with the Taylor-expanded 
maximum likelihood estimates of (E.18) and (E.19) providing 
a further refinement. 
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