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 Abstract—A uniform pulse repetition interval (PRI) 

introduces blind ranges due to transmit/receive (T/R) 

switching, in addition to range-Doppler ambiguities. 

Changing the pulse repetition frequency (PRF) on a scan-

to-scan basis mitigates blind ranges, but at the cost of 

requiring multiple scans. Alternatively, introducing 

staggering at the PRI level permits the avoidance of blind 

ranges without the need for multiple scans, while also 

providing an expansion of unambiguous Doppler, though 

doing so also requires more sophisticated receive processing 

to sufficiently address the increased Doppler sidelobes. It 

has recently been shown that PRI staggering can be 

optimized to flatten the extended Doppler response. In 

contrast, here we explore optimization to achieve a flattened 

energy distribution in range for the purpose of mitigating 

blind ranges. Diversification of pulse duration is also 

considered to determine its potential impact in this context. 

Index Terms—PRI staggering, blind ranges, pulse eclipsing, 

T/R switching, range ambiguity 

I. INTRODUCTION 

Pulse-Doppler radar commonly transmits a repeated 

waveform with a fixed PRF, resulting in the well-known 

tradeoff between unambiguous range 𝑅u = 𝑐𝑇PRI/2 and 

unambiguous Doppler 𝐹u = ±1/(2𝑇PRI), where c is the speed 

of light and 𝑇PRI is the PRI duration. Further, the ambiguity 

function of a uniform PRI pulse train with repeated waveforms 

yields a bed-of-nails structure [1]. Deviation from the bed-of-

nails structure can be achieved by introducing nonrepeating 

waveforms [1-3] and/or applying PRI staggering [1, 4]. 

Here we consider the optimization of otherwise random PRI 

staggering as well as pulse width modulation on a per-PRI basis 

as a means to extend the unambiguous range interval while also 

ameliorating blind ranges. The means of doing so is based on 

the maximization of “uneclipsed energy”, which is formulated 

in the following sections.  

A detailed analysis of random PRI staggering was recently 

performed in [4], followed by subsequent stagger sequence 

optimization to extend the unambiguous Doppler response [5]. 

Out of that work came the observation that the co-array notion 

used for sparse antenna array design likewise provides a useful 

tool for assessing stagger sequences [6], which is leveraged in 

formulating the uneclipsed energy framework. While not 

considered here, the restricted isometry property (RIP) that is 

widely invoked for compressive sensing has also recently been 

explored as way to evaluate goodness for stagger sequences [7]. 

 
 

The rather straightforward reason for blind ranges is that the 

use of T/R switching, whereby the receiver is turned off during 

pulse transmission to protect sensitive components, means that 

the range intervals associated with those “turn off” times are not 

received [8]. The related effect known as “pulse eclipsing” [9] 

occurs when a truncated version of the reflected waveform is 

received due to T/R switching. As discussed in [4], PRI 

staggering introduces further complexity to the impact of 

eclipsing. 

Here, the variability of the eclipsed scattered energy over 

range is examined, with a relationship established between the 

received energy over time (range delay) and the staggered PRI 

co-array. Specifically, random staggering mitigates blind 

ranges by redistributing the otherwise lost energy, though this 

random redistribution can be somewhat irregular over range. 

Consequently, optimization of staggering based on this co-

array/energy relationship is also performed as a means to flatten 

the distribution across range. Because it naturally fits within 

this framework, the impact of optimizing pulse widths (or duty 

cycles) is likewise considered.  

A consequence of staggered PRI and pulse width 

modulation is the need for more sophisticated radar receive 

processing. Put another way, while optimization can flatten 

ambiguities and mitigate blind ranges, doing so in turn 

complicates the emission structure such that standard receive 

processing may not perform well. Recent work on adaptive 

processing for this problem can be found in [10, 11] and was a 

key component of the DARPA Beyond Linear Processing 

(BLiP) program [12]. We shall treat the existence of such 

algorithms as a given and therefore focus solely on transmit 

signal design. 

II. T/R SWITCHING & ECLIPSED ENERGY 

We assume that T/R switching coincides with the 

rising/falling edges of the pulse and neglect the short temporal 

extent of these edges (i.e. treat as instantaneous) that may 

introduce minor model error. An illustration of PRI staggering 

in the context of range-extended scattering is depicted in Fig. 1, 

with the blanking effect of T/R switching also shown, resulting 

in some echoes being eclipsed. Pulse width modulation (PWM) 

is likewise represented via the changing pulse widths.  



 

 

 

 
Fig. 1: T/R Diagram – Color indicates pulse number; filled squares indicate the 

energy envelopes of scattered reflections. Staggered PRI and PWM incur 

eclipsing at different ranges for each pulse, thus modifying the energy received 

for each range bin. 

 

The pulse train envelope in this context is defined as 
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where 𝑡W,𝑝 indicates the pulse width and 𝑡D,𝑝 the pulse delay of 

the 𝑝th pulse, with rectangular function Π(𝑡) = 1  over  

−0.5 < 𝑡 < 0.5 and zero otherwise. The individual PRI delays 

(relative to the start of the coherent processing interval (CPI)) 

are defined by a cumulative sum of the PRI durations 𝑡ϵ,𝑝. The 

initial PRI duration 𝑡ϵ,1 is subtracted such that the cumulative 

delays are defined relative to time 𝑡 = 0, such that 
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𝑖=1
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The autocorrelation of the pulse train envelope is 

mathematically synonymous with the co-array (from sparse 

array design) [5] and accounts for the temporal extent of each 

rectangular pulse. For any given positive time lag, the amount 

of overlap between the static and shifted envelopes in the 

autocorrelation operation indicates the corresponding amount 

of eclipsed energy (that is, the energy obfuscated by a blind-

range component). The co-array is therefore 

𝑐(𝜏) = 𝑒(𝑡) ∗ 𝑒(−𝑡)                                                                   

                 = ∑∑

(

 
 

Π(
𝑡

𝑡W,𝑝
) ∗ Π(

𝑡

𝑡W,𝑞

)

∗ 𝛿 (𝑡 − (𝑡D,𝑝 − 𝑡D,𝑞 +
𝑡W,𝑝

2
−
𝑡W,𝑞

2
))
)

 
 

𝑃

𝑝=1

𝑃

𝑞=1

 . (3) 

The amount of uneclipsed energy may conversely be defined as 

the uneclipsed energy for each time lag as 

𝑐̃(𝜏) = 𝐸s − 𝑐(𝜏) , (4) 

where 𝐸s is the total transmit energy in the pulse train envelope. 

The relationship between the co-array 𝑐(𝜏) and the 

uneclipsed energy 𝑐̃(𝜏) is shown in Fig. 2 for a uniform PRI and 

a random PRI pulse train (no PWM), where the latter is 

constructed by cumulatively summing delays with a 20% 

uniformly-distributed deviation from the average PRI. 

Normalizing these by total energy 𝐸s yield a percentage. The 

result is an energy trace representing the amount of uneclipsed 

energy received at each delay. 

 
Fig. 2: Co-array 𝑐(𝜏) indicating eclipsed energy and the percent uneclipsed 

energy 𝑐̃(𝜏) over delay. Results are shown for a uniform PRI sequence and 

randomly staggered PRI sequence, with no PWM. 

 
Fig. 3: Percent of uneclipsed energy 𝑐̃(𝜏) across delay for 1) uniform PRI with 

no PWM, 2) randomly staggered PRI with no PWM, 3) uniform PRI with 

random PWM, and 4) random staggered PRI with random PWM. Staggering 

dithers from the average PRI by 15%, while PWM dithers from the average 

pulse width by 50%. 

 

Further examples of 𝑐̃(𝜏) are shown in Fig. 3, including a 

pulse train having 1) uniform PRI with no PWM, 2) randomly 

staggered PRI with no PWM, 3) uniform PRI with random 

PWM, and 4) randomly staggered PRI with random PWM. For 

case 1, the blind ranges are clearly visible at integer multiples 

of the fixed PRI. In contrast, case 2 introduces random 

staggering that significantly alleviates the impact of blind 

ranges, though somewhat less uneclipsed energy is obtained at 

some other ranges as a trade-off. For case 3, uniform PRI with 

random PWM only mildly alleviates pulse eclipsing effects, 

leaving much to be desired, which carries over into case 4 to 

modestly improve staggering alone. Notice that the energy 

distribution across delay for the random staggering cases is not 

flat, indicating that energy allocation at the extended range 

intervals is unequally distributed. Consequently, optimization 

of staggering and PWM bears consideration. 



 

 

 

II. MAXIMIZING UNECLIPSED ENERGY 

It is desirable to achieve uniform energy coverage in range 

to support downstream detection processing. To maximize and 

flatten the energy distribution over some prescribed extended 

range interval of 𝑐̃(𝜏), an equivalent problem is to minimize the 

co-array 𝑐(𝜏) over the same extended interval. Because the co-

array is symmetric, minimization can be performed for the 

positive delay bins only. The objective function is defined in 

terms of the 𝐿𝜚-norm metric 

𝐽 = (∫ [𝑐(𝜏)]𝜚
𝜏2

𝜏1

𝑑𝜏)

1/𝜚

. (5) 

Components of the co-array 𝑐(𝜏) can be expressed as a sum of 

delay-shifted trapezoids that are formed by the convolution of 

rectangular functions Π(
𝑡

𝑡W,𝑝
) ∗ Π (

𝑡

𝑡W,𝑞
) in (3). These trapezoids 

will have varying widths depending on the 𝑝th and 𝑞th pulse 

widths. The delay offset 𝛿 (𝜏 − (𝑡D,𝑝 − 𝑡D,𝑞 +
𝑡W,𝑝

2
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𝑡W,𝑞

2
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on the staggered PRI delays 𝑡D,𝑝 and 𝑡D,𝑞 of the interacting 

pulses. These trapezoids can be expressed as a superposition of 

time-shifted ramp functions, where 𝑟(𝑡) = 𝑡 for 𝑡 ≥ 0 and zero 

for 𝑡 < 0. The slope of the trapezoid edges is unitary due to the 

assumed constant amplitude of each pulse. Thus, the co-array 

in (3) simplifies to a superposition of ramp functions as 

𝑐(𝜏) = 𝑒(𝑡) ∗ 𝑒(−𝑡)                                                                              
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𝑃
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2
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2
))) 

(6) 

where  
𝑡1 = (−𝑡W,𝑝 − 𝑡W,𝑞)/2  

𝑡2 = (𝑡W,𝑝 − 𝑡W,𝑞)/2  

𝑡3 = (−𝑡W,𝑝 + 𝑡W,𝑞)/2  

𝑡4 = (𝑡W,𝑝 + 𝑡W,𝑞)/2 . (7) 

Because of trapezoidal symmetry, we have 𝑡2 = −𝑡3 and 

𝑡1 = −𝑡4, making the elements in each pair interchangeable 

without affecting the overall outcome. The impulse delay 

functions in (6) can be incorporated into the ramp functions as 

well, permitting the simplification  

𝑐(𝜏) = 𝑒(𝑡) ∗ 𝑒(−𝑡)                                                                         

      = ∑∑(𝑟(𝜏 − 𝑡1̅) − 𝑟(𝜏 − 𝑡2̅) − 𝑟(𝜏 − 𝑡3̅) + 𝑟(𝜏 − 𝑡4̅))

𝑃

𝑝=1

𝑃

𝑞=1

 
(8) 

with 

𝑡1̅ = 𝑡D,𝑝 − 𝑡D,𝑞 − 𝑡W,𝑞  

𝑡2̅ = 𝑡D,𝑝 − 𝑡D,𝑞 + 𝑡W,𝑝 − 𝑡W,𝑞  

𝑡3̅ = 𝑡D,𝑝 − 𝑡D,𝑞  

𝑡4̅ = 𝑡D,𝑝 − 𝑡D,𝑞 + 𝑡W,𝑝 (9) 

for subsequent gradient analysis. Fig. 4 provides an illustration 

of this sequential ramp construction of a trapezoidal function. 

 

Fig. 4: Decomposition of the convolution between two pulses of inequal widths 

In (8), gradients of the objective function of (5) can be 

determined with respect to each stagger intervals 𝑡D,𝑝 and pulse 

width 𝑡W,𝑝. Both gradients are derived in the Appendix. 

Additional constraints are imposed to bound the feasible 

relative staggers and pulse widths, while simultaneously 

enforcing constant total transmit energy 𝐸s and a fixed CPI 

duration 𝑇CPI. The constrained optimization problem is thus 

posed as 

𝐽 = (∫ 𝑐(𝜏)𝜚
𝜏2

𝜏1

𝑑𝜏)

1/𝜚

  

s. t.   𝑡W,min ≤ 𝑡W,𝑝 ≤ 𝑡W,max 

          𝑡ϵ,min ≤ 𝑡ϵ,𝑝 ≤  𝑡ϵ,max 

           (∑𝑡W,𝑝

𝑃

𝑝=1

)− 𝐸s = 0 

          (∑𝑡ϵ,𝑝

𝑃

𝑝=1

)− 𝑇CPI = 0 . 
(10) 

Note that variants of optimization formulations or solvers could 

conceivably be applied to this problem. Our purpose here is to 

explore the impact of optimization without necessarily 

determining what is the best approach to do so. 

III. OPTIMIZATION EVALUATION 

A set of 100 pulse train envelopes were initialized and 

optimized across all delay for 𝑃 = 100 pulses each. Here, both 

pulse delay and pulse width are normalized by the average PRI 

𝑇PRI
avg

 such that the pulse width describes a relative duty cycle.  

The minimum and maximum bounds on the relative delays 

between pulses are 𝑡ϵ,min = 0.5𝑇PRI
avg

 and 𝑡ϵ,max = 1.5𝑇PRI
avg

 (or 

50% dithering), while the pulse width duration is allowed to 

dither between 𝑡W,min = 0.05𝑇PRI
avg

 and 𝑡W,max = 0.15𝑇PRI
avg

 (or 

5% dithering). The average duty cycle is therefore 0.10𝑇PRI
avg

 (or 

10%). For each pulse train, all pulse delays and pulse widths 

were initialized from a random uniform distribution bounded 

between their respective lower and upper limits. Performance is 

evaluated for the initialized and optimized sets in terms of 

percent uneclipsed energy and the achieved extended Doppler 

response.  

Three separate optimization cases are considered: 1) only 

the pulse delay is optimized (while pulse width is fixed), 2) only 

the pulse width is optimized (while pulse delay is fixed), and 3) 

both pulse delay and pulse width are jointly optimized.  

The initialized variables are drawn from a uniformly-distributed 

random distribution and therefore provide modest performance. 

Optimization of pulse width only, if pulse delay were fixed to a 

uniform PRI, would only minimally improve blind range 



 

 

 

performance (per Fig. 3) and is therefore excluded from this 

evaluation. 

A histogram of maximum eclipsed energy (across all delay) 

over 100 trials is shown in Fig. 5. As expected, joint 

optimization is marginally the best, while pulse delay 

(staggering) optimization alone is moderately better than PWM 

optimization alone. Relative to Fig. 3, where PWM is applied 

to a uniform PRI, the PWM in this context yields better 

performance because it is employed along with either a random 

or optimized staggered PRI. Of course, all three optimization 

approaches consistently produce co-arrays that outperform their 

initializations. As reference, the case of uniform PRI and 

uniform PWM (not shown in Fig. 5) corresponds to 100% since 

blind ranges are completely eclipsed. 

 
Fig. 5: Histogram of the maximum percent eclipsed energy for 𝑃 = 100 pulses, 

generated from 100 Monte Carlo trials 

 

As the number of pulses 𝑃 increases, the performance 

distinction between the different optimization cases and from 

the initialization is observed to increase, while the variation in 

performance decreases across the trials. For instance, the 

average and maximum hold (worst-case) co-arrays across 100 

Monte Carlo trials are shown in Fig. 6 for each optimization 

approach. The peak percent energy of the maximum hold  

co-arrays for all optimized results are significantly lower than 

that of the initialization, demonstrating improvements in 

extrema of up to 11.5%, 9.10%, and 9.96% for optimization 

cases 1, 2, and 3, respectively. The respective improvements in 

the average co-array are 5.51%, 4.53%, and 6.56% for 

optimization cases 1, 2, and 3, relative to the initialization.  

The mean and maximum hold co-array of the initialization trials 

demonstrates significant fluctuation, though increasing 𝑃 

would naturally decrease fluctuations due to the central limit 

theorem. The optimized co-array curves are flatter than the 

initialization across delay, especially when examining the 

maximum hold values. Clearly, optimization can improve upon 

a random initialization in all cases to maximize the uneclipsed 

energy across range. Further, the achieved plateau occurs near 

the average duty cycle 0.10𝑇PRI
avg

, as this is the minimum 

achievable eclipsed energy in the nearest range intervals. Roll-

off at larger delays is due to reduction of pulse interactions. 

 
Fig. 6: Plot of the average and maximum co-array for 𝑃 = 100 pulses, from 

100 Monte Carlo trials 

 

Next, the extended Doppler response is analyzed over the 

set of staggered pulse trains. This response is dependent on the 

delay intervals 𝑡D,𝑝, but not necessarily on the PWM values 

𝑡W,𝑝. The extended Doppler response describes the expected 

response from a stationary scatterer, evaluating the zero-range 

cut. The mean and maximum Doppler beampattern of each 

optimization Monte Carlo are shown in Fig. 7. 

 
Fig. 7: Plot of average and maximum extended Doppler response for 𝑃 = 100, 

from 100 Monte Carlo trials 

While modest deviations occur in the Doppler response, the 

mean and maximum performance traces are quite similar for all 

cases. The observed ringing for higher normalized Doppler is 

the same as noted in [4]. Optimization of PWM alone has 

little/no effect on the Doppler response, relative to the 

initialization, considering that the staggers are the primary 

factor in this context. The distribution of the relative pulse 

delays for all cases is shown in Fig. 8. The optimized delay 

cases in blue and green both tend toward bimodal solutions, 

while the initialization and pulse width optimization 

distributions in red and yellow are uniform. 
 



 

 

 

 
Fig. 8: Histogram of the relative pulse delays for 𝑃 = 100, from 100 Monte 

Carlo trials 

  

Further comparison can be made with the distribution of 

pulse widths shown in Fig. 9. For both approaches involving 

PWM, the green and yellow bars are also nearly bimodal. 

Otherwise, the methods for blue and red remain flat like the 

drawn uniform distribution. Optimization of both relative delay 

and pulse width favor bimodal distributions for their respective 

parameters. As such, the combined optimization produces 

results that favor sets of parameters near the lower and upper 

bound constraints, which can be viewed as maximizing the 

amount achievable change given the permitted bounds. 

 

 
Fig. 9: Histogram of the relative pulse widths for 𝑃 = 100, from 100 Monte 

Carlo trials. 

VI. CONCLUSIONS 

Random PRI staggering can be used to extend unambiguous 

range and avoid blind ranges, though the energy distribution 

can be somewhat irregular. Using a form of gradient descent, it 

has been shown that staggered pulse sequences and PWM can 

be optimized to maximize the uneclipsed energy across a 

prescribed range interval, thereby flattening the energy 

distribution over range. Further, while such an approach does 

not directly address the desire for a flattening of the extended 

unambiguous Doppler, results indicate that this outcome is 

effectively attained as a bonus. This work examines the art of 

the possible for this problem, with exploration using other 

optimization approaches encouraged. 
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V. APPENDIX 

The gradient chain rule is applied, first determining the 

partial derivative 
𝜕𝐽

𝜕𝜆
 where 𝜆 is either 𝑡D,𝑝̅ or 𝑡W,𝑝̅, yielding 

𝜕𝐽

𝜕𝜆
=  (𝐽1−𝜚) ∙ ∫ 𝑐(𝜏)𝜚−1 (

𝜕𝑐(𝜏)

𝜕𝜆
)

𝜏2

𝜏1

𝑑𝜏 , (11) 

where 𝑝̅ = 1, 2,⋯ , 𝑃 indicates the pulse parameter under 

consideration. The derivative of the ramp function 𝑟(𝑡) is the 

unit step function 𝑢(𝑡) = 1 for 𝑡 ≥ 0 and zero for 𝑡 < 0.  Partial 

derivatives are calculated under four conditions existing within 

the double summation, specifically (𝑝̅ = 𝑝; 𝑝̅ = 𝑞),  
(𝑝̅ = 𝑝; 𝑝̅ ≠ 𝑞), (𝑝̅ ≠ 𝑝; 𝑝̅ = 𝑞) and (𝑝̅ ≠ 𝑝; 𝑝̅ ≠ 𝑞). The 

resulting gradient with respect to stagger interval is
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(12) 

The gradient with respect to pulse width  

𝜕𝑐(𝜏)

𝜕𝑡W;𝑝̅

=

(

 
 
 
 
 
 
∑(𝑢(𝑡 − 𝑡2̅) − 𝑢(𝑡 − 𝑡4̅))

𝑃

𝑞=1
𝑝̅≠𝑝
𝑝̅=𝑞

+∑(𝑢(𝑡 − 𝑡1̅) − 𝑢(𝑡 − 𝑡2̅))

𝑃

𝑝=1
𝑝̅=𝑝
𝑝̅≠𝑞

+∑𝑢(𝑡 − (−𝑡W,𝑝)) − 𝑢 (𝑡 − (𝑡W,𝑝))

𝑃

𝑝=1
𝑝̅=𝑝
𝑝̅=𝑞 )

 
 
 
 
 
 

 

 

(13) 

yields a slightly different solution because 𝑡1̅, 𝑡2̅, 𝑡3̅, 𝑡4̅ each 

have different relations to 𝑡W,𝑝̅. The latter term in (13) describes 

the co-array mainlobe. To minimize the co-array mainlobe, the 

obvious solution is to uniformly minimize all pulse widths to 

the smallest value. Generally, the minimization bounds will not 

include the co-array mainlobe width and the latter term may be 

disregarded. 

Lastly, the derivative 
𝜕𝐽

𝜕𝑡ϵ,𝑝̅
 is determined. The chain rule in 

the Jacobian form [13] dictates that 

𝜕𝐽

𝜕𝑡ϵ,𝑝̅
=∑

𝜕𝐽

𝜕𝑡D,𝑞̅

𝜕𝑡D,𝑞̅

𝜕𝑡ϵ,𝑝̅

𝑃

𝑞̅=1

 . (14) 

 

Apply (11) and (12) to define 
𝜕𝐽

𝜕𝑡D,𝑞̅
, then 

𝜕𝑡D,𝑞̅

𝜕𝑡ϵ,𝑝̅
 is determined as 

𝜕𝐽

𝜕𝑡ϵ,𝑝̅
=∑

𝜕𝐽

𝜕𝑡D,𝑞̅

𝜕𝑡D,𝑞̅

𝜕𝑡ϵ,𝑝̅

𝑃

𝑞̅=1

=∑
𝜕𝐽

𝜕𝑡D,𝑞̅
[
𝜕(∑ 𝑡ϵ,𝑖

𝑞̅
𝑖=2 )

𝜕𝑡ϵ,𝑝̅
] = ∑

𝜕𝐽

𝜕𝑡D,𝑞̅

𝑃

𝑞̅=𝑝̅

𝑃

𝑞̅=1

 

𝜕(∑ 𝑡ϵ,𝑖
𝑞̅
𝑖=2 )

𝜕𝑡ϵ,𝑝̅
= {

1    𝑞̅ > 1, 𝑞̅ ≥ 𝑝̅
0    𝑞̅ = 1, 𝑞̅ ≤ 𝑝̅

  . 

(15) 

Combining terms from (11)-(15) provides the complete 

gradients as

 

𝜕𝐽

𝜕𝑡ϵ,𝑝̅
= 

{
 
 
 
 
 

 
 
 
 
 

(𝐽1−𝜚) ∙∑∫ 𝑐(𝜏)𝜚−1

(

 
 
 
 
 
 
∑(−𝑢(𝜏 − 𝑡1̅) + 𝑢(𝜏 − 𝑡2̅) + 𝑢(𝜏 − 𝑡3̅) − 𝑢(𝜏 − 𝑡4̅))

𝑃

𝑞=1
𝑞̅≠𝑝
𝑞̅=𝑞

+∑(𝑢(𝜏 − 𝑡1̅) − 𝑢(𝜏 − 𝑡2̅) − 𝑢(𝜏 − 𝑡3̅) + 𝑢(𝜏 − 𝑡4̅))

𝑃

𝑝=1
𝑞̅=𝑝
𝑞̅≠𝑞 )

 
 
 
 
 
 

𝜏2

𝜏1

𝑑𝜏

𝑃

𝑞̅=𝑝̅

                                                                                                                    for 𝑝̅ = 2, 3,⋯ , 𝑃
 

                                                     0                                             for 𝑝̅ = 1

 

 

 

 

(16) 

 

 

𝜕𝐽

𝜕𝑡W;𝑝̅
= (𝐽1−𝜚) ∙ ∫ 𝑐(𝜏)𝜚−1

(

 
 
 
 
 
 
∑(𝑢(𝑡 − 𝑡2̅) − 𝑢(𝑡 − 𝑡4̅))

𝑃

𝑞=1
𝑝̅≠𝑝
𝑝̅=𝑞

+∑(𝑢(𝑡 − 𝑡1̅) − 𝑢(𝑡 − 𝑡2̅))

𝑃

𝑝=1
𝑝̅=𝑝
𝑝̅≠𝑞

+∑𝑢(𝑡 − (−𝑡W,𝑝)) − 𝑢 (𝑡 − (𝑡W,𝑝))

𝑃

𝑝=1
𝑝̅=𝑝
𝑝̅=𝑞 )

 
 
 
 
 
 

𝜏2

𝜏1

𝑑𝜏 . 
(17) 


